Denitration performance of SnOx-CeOx/Pitch-Based Spherical Activated Carbon Catalysts for Selective Catalytic Reduction of NO
-
摘要: 以高软化点石油沥青为原料制备的球形活性炭为载体,采用浸渍法负载锡铈氧化物制得SnOx-CeOx/沥青基球形活性炭系列催化剂,考察了其在低温下的脱硝性能,并利用N2吸/脱附,X射线衍射(XRD),X射线光电子能谱(XPS)等方法对催化剂进行了表征。结果表明,向CeOx/PSAC催化剂中添加SnOx后其脱硝活性显著增加;催化剂的脱硝活性随金属担载量的增加呈现先升高后降低的趋势。Sn(w=5%)Ce(w=13%)/PSAC(本文以Sn(5%)Ce(13%)/PSAC表示)催化剂具有最高的脱硝活性,在100~300 oC温度范围内得到最高NO转化率98%。添加SnOx后提高了CeO2在载体表面的分散性,而且Sn4+替代Ce4+掺杂于立方相CeO2晶格中形成固溶体,从而提高了催化剂的脱硝活性。此外,与单组份铈催化剂相比,Sn(5%)Ce(13%)/PSAC催化剂具有较好的抗SO2毒化性能。Abstract: Pitch-based spherical activated carbon (PSAC) is widely used in medical treatment, environmental protection and other fields because of its advantages of high specific surface area, high mechanical strength, high packing intensity and low fluid resistance. A series of SnOx-CeOx/PSAC catalysts were prepared by impregnation method using PSAC prepared from high softening point petroleum pitch as support. And their catalytic performance were evaluated by the low-temperature selective catalytic reduction (SCR) of NO with NH3. The obtained samples were mainly characterized by nitrogen adsorption/desorption, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that SnOx-CeOx/PSAC catalyst exhibits higher SCR activity in comparison with CeOx/PSAC catalyst, and the trend of NO conversion firstly increases and then decreases with the increasing of metal loading. The Sn(5%)Ce(13%)/PSAC catalyst exhibits the highest NO removal activity, where the highest NO conversion can reach about 98% in the temperature range of 100~300 oC. The reason is mainly attributed to the improved dispersion of cerium oxide on the surface of PSAC by addition of SnOx, and the formation of solid solution between SnOx and CeOx with the fluorite-type structure, which may be caused by the incorporation of Sn4+ into the crystal lattice of CeO2. Furthermore, there are a certain amount of Ce3+, and higher percentage of surface chemisorbed oxygen on the catalyst surface because of the synergistic effect between tin and cerium oxides. These factors result in the excellent NH3-SCR performance of the Sn(5%)Ce(13%)/PSAC catalyst. Compared with CeOx/PSAC catalyst, SnOx-CeOx/PSAC catalyst exhibits a higher resistance to SO2 poisoning. NO conversion of Sn(5%)Ce(13%)/PSAC catalyst is still about 80% at 260 oC after the introduction of SO2 in the feed gas for 420 min.
-
表 1 沥青球形活性炭的孔结构参数
Table 1. Pore structure parameters of PSAC
Sample SBET/(m2·g-1) Smic/(m2·g-1) Vtotal/(cm3·g-1) Vmic/(cm3·g-1) PSAC 1522 1373 0.66 0.60 Note: SBET: BET specific surface area; Smic: Micropore surface area; Vtotal: Total pore volume; Vmic: Micropore volume 表 2 不同催化剂的BET比表面积和孔结构
Table 2. BET specific surface area and pore structure of various catalysts
Sample SBET/(m2·g-1) Smic/(m2·g-1) Vtotal/(cm3·g-1) Vmic/(cm3·g-1) Sn(1%)Ce(3%)/PSAC 926 861 0.36 0.35 Sn(3%)Ce(8%)/PSAC 754 668 0.35 0.28 Sn(5%)Ce(13%)/PSAC 684 624 0.31 0.26 Sn(7%)Ce(18%)/PSAC 513 452 0.24 0.19 表 3 Sn(5%)Ce(13%)/PSAC催化剂表面元素浓度
Table 3. Surface atomic concentrations of Sn(5%)Ce(13%)/PSAC catalyst
Surface atomic concentration
(%)Relative atomic fraction/ % Sn C Ce O Oβ Oα 1.08 82.92 1.96 14.04 78.7 21.3 -
[1] BOSCH H, JANSSEN F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988, 2(4): 369-379. doi: 10.1016/0920-5861(88)80002-6 [2] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOX by ammonia over oxide catalysts: A review[J]. Applied Catalysis B:Environmental, 1998, 18(1/2): 1-36. doi: 10.1016/S0926-3373(98)00040-X [3] YANG M, LIU Q C, XUE Q, et al. Preparation and characterization of V2O5-WO3/TiO2 catalyst by chemical vapor deposition[J]. Journal of Functional Materials, 2010, 41(4): 683-686. [4] KRISTENSEN S B, KUNOV-KRUSE A J, RIISAGER A, et al. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia[J]. Journal of Catalysis, 2011, 284(1): 60-67. doi: 10.1016/j.jcat.2011.08.017 [5] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti Mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14500-14508. [6] WANG Y L, HUANG Z G, LIU Z Y, et al. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NO removal at low temperatures[J]. Carbon, 2004, 42(2): 445-448. doi: 10.1016/j.carbon.2003.11.006 [7] HUANG Z G, LIU Z Y, ZHANG X L, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B:Environmental, 2006, 63(3-4): 260-265. doi: 10.1016/j.apcatb.2005.10.011 [8] 王艳莉, 李翠, 詹亮, 等. 制备条件对蜂窝状MnOx/ACH催化剂低温脱硝性能的影响[J]. 华东理工大学学报, 2013, 39(5): 509-515. [9] WANG Y L, GE C Z, ZHAN L, et al. MnOx-CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11667-11673. [10] WANG X, ZHENG Y Y, Xu Z, et al. Low-temperature NO reduction with NH3 over Mn-CeOx/CNT catalysts prepared by a liquid-phase method[J]. Catalysis Science & Technology, 2014, 4(6): 1738-1741. [11] 唐晓龙, 郝吉明, 易红宏, 等. 活性炭改性整体催化剂上低温选择性还原NOX[J]. 中国环境科学, 2007, 27(6): 845-850. doi: 10.3321/j.issn:1000-6923.2007.06.026 [12] FANG C, SHI L Y, LI H R, et al. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2016, 6(82): 78727-78736. doi: 10.1039/C6RA18339E [13] CHANG H Z, CHEN X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified CeO2-MnOx catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301. [14] YU M, LI C T, ZENG G M, et al. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2[J]. Applied Surface Science, 2015, 342: 174-182. doi: 10.1016/j.apsusc.2015.03.052 [15] WANG Y L, KANG Y, Ge M, et al. Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures[J]. RSC Advances, 2018, 8(63): 36383-36391. doi: 10.1039/C8RA05151H [16] 刘朝军, 梁晓怿, 滕娜, 等. 气相氧化处理对沥青基球状活性炭表面化学及吸附性能的影响[J]. 新型炭材料, 2010, 25(6): 460-464. [17] Wang Z, Wang Y L, Long D H, et al, Kinetics and Mechanism Study of Low-Temperature Selective Catalytic Reduction of NO with Urea Supported on Pitch-Based Spherical Activated Carbon[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6017-6027. [18] 王际童, 刘小军, 李泽斯, 等. 沥青基球形活性炭对葡萄糖分子的吸附行为研究[J]. 离子交换与吸附, 2011, 27(3): 247-256. [19] LI X L, LI Y H, DENG S S, et al. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Communications, 2013, 40: 47-50. doi: 10.1016/j.catcom.2013.05.024 [20] 王艳莉, 李晓晓, 詹亮, 等. 金属助剂对蜂窝状MnOx-CeO2/ACH催化剂低温脱硝行为的影响[J]. 燃料化学学报, 2014, 42(11): 1365-1371. doi: 10.3969/j.issn.0253-2409.2014.11.014 [21] WANG Y L, LI X X, ZHAN L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2274-2278. [22] 王艳莉, 何自国, 詹亮, 等. SnOx-CeO2-MnOx/球状活性炭催化剂低温选择性催化还原NO[J]. 新型炭材料, 2015, 30(6): 533-538. [23] CHEN Y, LIAW B, HUANG C. Selective oxidation of CO in excess hydrogen over CuO/CexSn1-xO2 catalysts[J]. Applied Catalysis A:General, 2006, 302(2): 168-176. doi: 10.1016/j.apcata.2005.12.032 [24] 纵宇浩, 沈岳松, 王玉云, 等. Ce-Sn-W-Ox催化剂的配伍优化及脱硝影响因素[J]. 环境工程学报, 2015, 9(3): 1329-1336. doi: 10.12030/j.cjee.20150357 [25] YAO W Q, CHEN J, ZHAN L, et al. Two-dimensional porous sandwich-like C/Si−graphene−Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39371-39379. [26] TANG X, LI J, HAO J. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium[J]. Catalysis Communications, 2010, 11(10): 871-875. doi: 10.1016/j.catcom.2010.03.011 [27] LIU F, SHAN W, LIAN Z, et al. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catalysis Science & Technology, 2013, 3(10): 2699-2707. [28] ZHANG G D, HAN W L, ZHAO H J, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction[J]. Applied Catalysis B:Environmental, 2018, 226: 117-126. doi: 10.1016/j.apcatb.2017.12.030 [29] XU X L, ZHANG R B, ZENG X R, et al. Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation[J]. Chem Cat Chem, 2013, 5(7): 2025-2036. [30] YAO X J, XIONG Y, ZOU W X, et al. Correlation between the physicochemical properties and catalytic performances of CexSn1-xO2 mixed oxides for NO reduction by CO[J]. Applied Catalysis B:Environmental, 2014, 144: 152-165. doi: 10.1016/j.apcatb.2013.06.020 [31] ZHANG L, LI L L, CAO Y, et al. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catalysis Science& Technology, 2015, 5: 2188-2196. [32] 唐幸福, 李俊华, 魏丽斯, 等. 氧化还原沉淀法制备MnOx-SnO2催化剂及其对NO的NH3选择催化还原性能[J]. 催化学报, 2008, 29(6): 531-536. doi: 10.3321/j.issn:0253-9837.2008.06.007 -