高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

SnOx-CeOx/沥青基球形活性炭催化剂选择性催化还原NO的脱硝性能

王艳莉 崔均烜 褚晨婕 詹亮

王艳莉, 崔均烜, 褚晨婕, 詹亮. SnOx-CeOx/沥青基球形活性炭催化剂选择性催化还原NO的脱硝性能[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 153-160. doi: 10.14135/j.cnki.1006-3080.20211014002
引用本文: 王艳莉, 崔均烜, 褚晨婕, 詹亮. SnOx-CeOx/沥青基球形活性炭催化剂选择性催化还原NO的脱硝性能[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 153-160. doi: 10.14135/j.cnki.1006-3080.20211014002
WANG Yanli, CUI Junxuan, CHU Chenjie, ZHAN Liang. Denitration Performance of SnOx-CeOx/Pitch-Based Spherical Activated Carbon Catalysts for Selective Catalytic Reduction of NO[J]. Journal of East China University of Science and Technology, 2023, 49(2): 153-160. doi: 10.14135/j.cnki.1006-3080.20211014002
Citation: WANG Yanli, CUI Junxuan, CHU Chenjie, ZHAN Liang. Denitration Performance of SnOx-CeOx/Pitch-Based Spherical Activated Carbon Catalysts for Selective Catalytic Reduction of NO[J]. Journal of East China University of Science and Technology, 2023, 49(2): 153-160. doi: 10.14135/j.cnki.1006-3080.20211014002

SnOx-CeOx/沥青基球形活性炭催化剂选择性催化还原NO的脱硝性能

doi: 10.14135/j.cnki.1006-3080.20211014002
基金项目: 国家自然科学基金(51472086, 51002051, 22075081, 20806024);上海市自然科学基金(12ZR1407200)
详细信息
    作者简介:

    王艳莉(1975—),女,陕西西乡人,副教授,博士,主要研究方向为碳质功能材料的结构控制及其在能源、环境领域中的应用基础研究。E-mail:ylwang@ecust.edu.cn

  • 中图分类号: TQ032

Denitration Performance of SnOx-CeOx/Pitch-Based Spherical Activated Carbon Catalysts for Selective Catalytic Reduction of NO

  • 摘要: 以高软化点石油沥青原料制备的沥青基球形活性炭(PSAC)为载体,采用浸渍法负载锡、铈氧化物制备SnOx-CeOx/PSAC系列催化剂,考察催化剂在低温下的脱硝性能,并采用N2吸附/脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)等方法对催化剂进行表征。结果表明,在CeOx/PSAC催化剂中添加SnOx后催化剂的脱硝活性显著增加,但随着金属担载量(质量分数)增加,脱硝活性呈现先升高后降低的趋势,Sn、Ce担载量分别为5%和13%的SnOx-CeOx/PSAC(以Sn(5%)Ce(13%)/PSAC表示)催化剂具有最高的脱硝活性,在该催化剂条件下,100~300 ℃时可得到最高的NO转化率(98%)。添加SnOx后,CeO2在载体表面的分散性得到提高,由于Sn4+替代Ce4+掺杂于立方相CeO2晶格中形成固溶体,因而催化剂的脱硝活性提高。此外,与单组分铈催化剂相比,Sn(5%)Ce(13%)/PSAC催化剂具有较好的抗SO2毒化性能。

     

  • 图  1  PSAC的SEM照片

    Figure  1.  SEM image of PSAC

    图  2  PSAC的N2吸附/脱附等温线(a)和孔径分布曲线(b)

    Figure  2.  N2 adsorption/desorption isotherms (a) and corresponding pore size distribution curves (b) of PSAC

    图  3  不同催化剂的脱硝活性比较

    Figure  3.  Comparison of denitration activities over various catalysts

    图  4  不同金属担载量时SnOx-CeOx/PSAC催化剂的脱硝活性比较

    Figure  4.  Comparison of denitration activities over SnOx-CeOx/PSAC catalysts with different metal loadings

    图  5  260 ℃下SO2对Sn(5%)Ce(13%)/PSAC和Ce/PSAC催化剂脱硝活性的影响

    Figure  5.  Effect of SO2 on denitration activities over Sn(5%)Ce(13%)/PSAC and Ce/PSAC catalysts at 260 ℃

    图  6  不同金属担载量时SnOx-CeOx/PSAC催化剂的N2吸附/脱附等温线(a)和孔径分布曲线(b)

    Figure  6.  N2 adsorption/desorption isotherms (a) and corresponding pore size distribution curves (b) of SnOx-CeOx/PSAC catalysts with different metal loadings

    图  7  不同样品的XRD谱图

    Figure  7.  XRD patterns of different samples

    图  8  Sn(5%)Ce(13%)/PSAC催化剂的XPS全谱图

    Figure  8.  XPS full spectrum of Sn(5%)Ce(13%)/PSAC catalyst

    图  9  Sn(5%)Ce(13%)/PSAC催化剂的C 1s,O 1s,Ce 3d和Sn 3d的XPS分峰谱图

    Figure  9.  XPS spectra of C 1s, O 1s, Ce 3d and Sn 3d for Sn(5%)Ce(13%)/PSAC catalyst

    表  1  PSAC的孔结构参数

    Table  1.   Pore structure parameters of PSAC

    SBET/(m2·g−1)Smic/(m2·g−1)Vtotal/(cm3·g−1)Vmic/(cm3·g−1)
    152213730.660.60
    SBET—BET specific surface area; Smic—Micropore surface area; Vtotal—Total pore volume; Vmic—Micropore volume
    下载: 导出CSV

    表  2  不同催化剂的BET比表面积和孔结构

    Table  2.   BET specific surface area and pore structure of various catalysts

    SampleSBET/
    (m2·g−1)
    Smic/
    (m2·g−1)
    Vtotal/
    (cm3·g−1)
    Vmic/
    (cm3·g−1)
    Sn(1%)Ce(3%)/PSAC9268610.360.35
    Sn(3%)Ce(8%)/PSAC7546680.350.28
    Sn(5%)Ce(13%)/PSAC6846240.310.26
    Sn(7%)Ce(18%)/PSAC5134520.240.19
    下载: 导出CSV

    表  3  Sn(5%)Ce(13%)/PSAC催化剂的表面原子摩尔分数

    Table  3.   Surface atomic mole fraction of Sn(5%)Ce(13%)/PSAC catalyst

    Mole fraction/%Relative atomic ratio/%1)
    SnCCeOOβOα
    1.0882.921.9614.0478.721.3
    1) Calculated by the peak area
    下载: 导出CSV
  • [1] BOSCH H, JANSSEN F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988, 2(4): 369-379. doi: 10.1016/0920-5861(88)80002-6
    [2] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B:Environmental, 1998, 18(1/2): 1-36. doi: 10.1016/S0926-3373(98)00040-X
    [3] YANG M, LIU Q C, XUE Q, et al. Preparation and characterization of V2O5-WO3/TiO2 catalyst by chemical vapor deposition[J]. Journal of Functional Materials, 2010, 41(4): 683-686.
    [4] KRISTENSEN S B, KUNOV-KRUSE A J, RIISAGER A, et al. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia[J]. Journal of Catalysis, 2011, 284(1): 60-67. doi: 10.1016/j.jcat.2011.08.017
    [5] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14500-14508.
    [6] WANG Y L, HUANG Z G, LIU Z Y, et al. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NO removal at low temperatures[J]. Carbon, 2004, 42(2): 445-448. doi: 10.1016/j.carbon.2003.11.006
    [7] HUANG Z G, LIU Z Y, ZHANG X L, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B:Environmental, 2006, 63(3/4): 260-265. doi: 10.1016/j.apcatb.2005.10.011
    [8] 王艳莉, 李翠, 詹亮, 等. 制备条件对蜂窝状MnOx/ACH催化剂低温脱硝性能的影响[J]. 华东理工大学学报(自然科学版), 2013, 39(5): 509-515.
    [9] WANG Y L, GE C Z, ZHAN L, et al. MnOx-CeO2/Activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11667-11673.
    [10] WANG X, ZHENG Y Y, Xu Z, et al. Low-temperature NO reduction with NH3 over Mn-CeOx/CNT catalysts prepared by a liquid-phase method[J]. Catalysis Science & Technology, 2014, 4(6): 1738-1741.
    [11] 唐晓龙, 郝吉明, 易红宏, 等. 活性炭改性整体催化剂上低温选择性还原NOx[J]. 中国环境科学, 2007, 27(6): 845-850. doi: 10.3321/j.issn:1000-6923.2007.06.026
    [12] FANG C, SHI L Y, LI H R, et al. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2016, 6(82): 78727-78736. doi: 10.1039/C6RA18339E
    [13] CHANG H Z, CHEN X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified CeO2-MnOx catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301.
    [14] YU M, LI C T, ZENG G M, et al. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2[J]. Applied Surface Science, 2015, 342: 174-182. doi: 10.1016/j.apsusc.2015.03.052
    [15] WANG Y L, KANG Y, Ge M, et al. Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures[J]. RSC Advances, 2018, 8(63): 36383-36391. doi: 10.1039/C8RA05151H
    [16] 刘朝军, 梁晓怿, 滕娜, 等. 气相氧化处理对沥青基球状活性炭表面化学及吸附性能的影响[J]. 新型炭材料, 2010, 25(6): 460-464.
    [17] WANG Z, WANG Y L, LONG D H, et al, Kinetics and mechanism study of low-temperature selective catalytic reduction of NO with urea supported on pitch-based spherical activated carbon[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6017-6027.
    [18] 王际童, 刘小军, 李泽斯, 等. 沥青基球形活性炭对葡萄糖分子的吸附行为研究[J]. 离子交换与吸附, 2011, 27(3): 247-256.
    [19] LI X L, LI Y H, DENG S S, et al. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Communications, 2013, 40: 47-50. doi: 10.1016/j.catcom.2013.05.024
    [20] 王艳莉, 李晓晓, 詹亮, 等. 金属助剂对蜂窝状MnOx-CeO2/ACH催化剂低温脱硝行为的影响[J]. 燃料化学学报, 2014, 42(11): 1365-1371. doi: 10.3969/j.issn.0253-2409.2014.11.014
    [21] WANG Y L, LI X X, ZHAN L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2274-2278.
    [22] 王艳莉, 何自国, 詹亮, 等. SnOx-CeO2-MnOx/球状活性炭催化剂低温选择性催化还原NO[J]. 新型炭材料, 2015, 30(6): 533-538.
    [23] CHEN Y Z, LIAW B J, HUANG C W. Selective oxidation of CO in excess hydrogen over CuO/CexSn1−xO2 catalysts[J]. Applied Catalysis A: General, 2006, 302(2): 168-176. doi: 10.1016/j.apcata.2005.12.032
    [24] 纵宇浩, 沈岳松, 王玉云, 等. Ce-Sn-W-Ox催化剂的配伍优化及脱硝影响因素[J]. 环境工程学报, 2015, 9(3): 1329-1336. doi: 10.12030/j.cjee.20150357
    [25] YAO W Q, CHEN J, ZHAN L, et al. Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39371-39379.
    [26] TANG X, LI J, HAO J. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium[J]. Catalysis Communications, 2010, 11(10): 871-875. doi: 10.1016/j.catcom.2010.03.011
    [27] LIU F, SHAN W, LIAN Z, et al. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catalysis Science & Technology, 2013, 3(10): 2699-2707.
    [28] ZHANG G D, HAN W L, ZHAO H J, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction[J]. Applied Catalysis B:Environmental, 2018, 226: 117-126. doi: 10.1016/j.apcatb.2017.12.030
    [29] XU X L, ZHANG R B, ZENG X R, et al. Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation[J]. ChemCatChem, 2013, 5(7): 2025-2036.
    [30] YAO X J, XIONG Y, ZOU W X, et al. Correlation between the physicochemical properties and catalytic performances of CexSn1−xO2 mixed oxides for NO reduction by CO[J]. Applied Catalysis B:Environmental, 2014, 144: 152-165. doi: 10.1016/j.apcatb.2013.06.020
    [31] ZHANG L, LI L L, CAO Y, et al. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catalysis Science& Technology, 2015, 5: 2188-2196.
    [32] 唐幸福, 李俊华, 魏丽斯, 等. 氧化还原沉淀法制备MnOx-SnO2催化剂及其对NO的NH3选择催化还原性能[J]. 催化学报, 2008, 29(6): 531-536. doi: 10.3321/j.issn:0253-9837.2008.06.007
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  127
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回