高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

水基金属加工液中微生物多样性研究

杨兰 曾诗琪 熊星 张婷 江鹏 周晓龙

杨兰, 曾诗琪, 熊星, 张婷, 江鹏, 周晓龙. 水基金属加工液中微生物多样性研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211014001
引用本文: 杨兰, 曾诗琪, 熊星, 张婷, 江鹏, 周晓龙. 水基金属加工液中微生物多样性研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211014001
YANG Lan, ZENG Shiqi, XIONG Xing, ZHANG Ting, JIANG Peng, ZHOU Xiaolong. Diversity Research of Microbial in Water-based Metalworking Fluids[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211014001
Citation: YANG Lan, ZENG Shiqi, XIONG Xing, ZHANG Ting, JIANG Peng, ZHOU Xiaolong. Diversity Research of Microbial in Water-based Metalworking Fluids[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211014001

水基金属加工液中微生物多样性研究

doi: 10.14135/j.cnki.1006-3080.20211014001
详细信息
    作者简介:

    杨兰:杨 兰(1987—),女,浙江温岭人,硕士,副研究员,主要研究方向为金属加工油液产品。E-mail:ylan.lube@sinopec.com

    通讯作者:

    周晓龙,E-mail:xiaolong@ecust.edu.cn

  • 中图分类号: TG506.1

Diversity Research of Microbial in Water-based Metalworking Fluids

  • 摘要: 微生物污染会缩减金属加工液使用寿命,细菌比真菌更容易在金属加工液中滋生。在所采集的6组金属加工液样本中,共检测出细菌2门、2纲、5目、6科、10属和14种,而真菌为4门、8纲、10目、14科、15属和17种,真菌多样性更丰富,但真菌只出现在细菌污染严重的样本中。种水平下,弗氏柠檬酸杆菌(Citrobacter_freundii)、Unclassified_g_CitrobacterUnclassified_f_Enterobacteriaceae被确定为优势细菌,且检出细菌以革兰氏阴性菌为主;真菌以未知真菌(Unclassified_k_Fungi)和Fusarium_petroliphilum为主。

     

  • 图  1  不同水平下金属加工液细菌群落组成

    Figure  1.  Bacterial composition in metalworking fluid at different level

    图  2  属水平下金属加工液细菌群落组成

    Figure  2.  Bacterial composition in metalworking fluid at genus level

    图  3  种水平下金属加工液细菌群落组成

    Figure  3.  Bacterial composition in metalworking fluid at species level

    图  4  不同水平下金属加工液真菌群落组成

    Figure  4.  Fungal composition in metalworking fluid at different level

    图  5  属水平下金属加工液真菌群落组成

    Figure  5.  Fungal composition in metalworking fluid at genus level

    图  6  种水平下金属加工液真菌群落组成

    Figure  6.  Fungal composition in metalworking fluid at species level

    表  1  样本采集信息

    Table  1.   Details of sample collection

    SampleCollection dateCollection locationTemperature/ ℃Usage time/ dpHCOD/ (mg·L−1)
    QX12020/01Minhang, Shanghai3~9907.8860429
    QX22020/06Hefei, Anhui23~313006.3481417
    QX32020/05Weifang, Shandong12~261506.5978816
    CJ2021/03Wuhu, Anhui8~171806.9566242
    JX2021/03Lishui, Zhejiang10~204505.7280538
    WF2020/08Weifang, Shandong23~321507.42113574
    下载: 导出CSV

    表  2  分离前后不同样品细菌浓度

    Table  2.   Bacterial concentration of different samples before and after separation

    Sampleconcentration / (CFU·mL−1)
    Original emulsion104
    Sample after PAC demulsification10
    Sample after centrifugation104
    Sample after mikrocount combi method106
    下载: 导出CSV

    表  3  金属加工液微生物多样性统计

    Table  3.   Diversity of microbial in water-based metal working fluids

    SampleMicroorganismPhylumClassOrderFamilyGenusSpeciesOTU
    QX1Bacteria1112223
    Fungi///////
    QX2Bacteria1123555
    Fungi47912131423
    QX3Bacteria1123445
    Fungi///////
    CJBacteria1122333
    Fungi///////
    JXBacteria2244445
    Fungi4666778
    WFBacteria2245579
    Fungi///////
    下载: 导出CSV
  • [1] 周佩, 李昀, 江鹏, 等. 轧制油泥资源化工艺研究[J]. 环境污染与防治, 2020, 42(5): 575-578, 585.
    [2] WICKRAMASINGHE K, SASAHARA H, RAHIM E, et al. Recent advances on high performance machining of aerospace materials and composites using vegetable oil-based metal working fluids[J]. Journal of Cleaner Production, 2021, 310(10): 127459.
    [3] MOHAMED O, AMARPREET S, RASHMI W, et al. Recent developments and performance review of metal working fluids[J]. Tribology International, 2017, 114(3): 389-401.
    [4] 李春风, 罗新民. 金属加工液中控制微生物方法初探[J]. 润滑油, 2005, 20(1): 21-24. doi: 10.3969/j.issn.1002-3119.2005.01.005
    [5] 唐晓林. 乳化型水基金属加工液生物稳定性的研究[D]. 沈阳: 东北大学, 2004.
    [6] 赵同强, 吴家兵, 祁成, 等. 某机械加工车间金属加工染情况调查及原因初探[J]. 中国工业医学杂志, 2013, 26(1): 43-45.
    [7] TRAFNY E, LEWANDOWSKI R, KOZŁOWSKA K, et al. Microbial contamination and biofilms on machines of metal industry using metalworking fluids with or without biocides[J]. International Biodeterioration & Biodegradation, 2015, 99(2): 31-38.
    [8] 李庆宏,陈景浩,申媛媛,等. 切削液中类产碱假单胞菌对铝合金腐蚀行为的影响[J]. 表面技术, 2021, 50(5): 269-280.
    [9] 李庆宏, 杨懿, 吴泽奇, 等. 切削液的微生物劣化对碳钢耐腐蚀行为的影响[J]. 润滑与密封, 2020, 45(10): 14-21. doi: 10.3969/j.issn.0254-0150.2020.10.003
    [10] GILBERT Y, VEILLETTE M, DUCHAINE C. Metalworking fluids biodiversity characterization[J]. Journal of Applied Microbiology, 2010, 108(2): 437-449. doi: 10.1111/j.1365-2672.2009.04433.x
    [11] KAPOOR R, YADAV J. Expanding the mycobacterial diversity of metalworking fluids (MWFs): Evidence showing MWF colonization by Mycobacterium abscessus[J]. FEMS Microbiology Ecology, 2012, 79(2): 392-399. doi: 10.1111/j.1574-6941.2011.01227.x
    [12] ELŻBIETA T. Microorganisms in metalworking fluids: Current issues in research and management[J]. International Journal of Occupational Medicine and Environmental Health, 2013, 26(1): 4-15.
    [13] MARCHAND G, LAVOIE J, RACINE L, et al. Evaluation of bacterial contamination and control methods in soluble metalworking fluids[J]. Journal of Occupational and Environmental Hygiene, 2010, 7(6): 358-366. doi: 10.1080/15459621003741631
    [14] LUCCHESI E, EGUCHI S, MORAES A. Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrates[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(5): 743-748.
    [15] SAHA R, DONOFRIO R. The microbiology of metalworking fluids[J]. Applied Microbiology and Biotechnology, 2012, 94(5): 1119-1130. doi: 10.1007/s00253-012-4055-7
    [16] 冯万里, 王沥东, 何伟煜, 等. 冷冻解冻法废切削液破乳及其影响因素[J]. 华东理工大学学报(自然科学版), 2017, 43(3): 358-362.
    [17] 程晓迪. 粘土矿物与锰氧化菌的吸附特性及对细菌生长和Mn(Ⅱ)氧化的影响[D]. 武汉: 华中农业大学, 2011.
    [18] 中华人民共和国生态环境部. 水质 细菌总数的测定 平皿计数法: HJ 1000—2018[S]. 北京: 中国标准出版社, 2018.
    [19] 邓桃, 袁青松, 周涛, 等. 一株玉米赤霉烯酮高效降解细菌的筛选与降解条件研究[J]. 中国中药杂志, 2021, 46(20): 5240-5246.
    [20] 肖苗苗, 张红娟, 赵芳, 等. 小麦/玉米轮作田根际微生物多样性分析[J]. 微生物学通报, 2021, 48(12): 4612-4623.
    [21] 李鹏洋, 安启睿, 王新皓, 等. 辽河四平段流域河流沉积物微生物群落多样性和结构分析[J]. 环境科学, 2022, 43(5): 2586-2594.
    [22] 郑立伟, 赵阳阳, 王一冰, 等. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 2022, 49(1): 101-114.
    [23] MAINA S, KACHRIMANIDOU V, LADAKIS D, et al. Evaluation of 1, 3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate[J]. Environmental Science and Pollution Research International, 2019, 26(35): 35523-35532. doi: 10.1007/s11356-019-05485-4
    [24] 朱作鑫. 水基纳米轧制液制备及润滑模型研究[D]. 北京: 北京科技大学, 2015.
    [25] 吴辰. 没食子酸及其烷基酯在水包油型乳状液中的抗氧化作用及其与α-生育酚相互作用机理研究[D]. 南昌: 南昌大学, 2016.
    [26] 曾桥, 吕生华, 李祥, 等. 不同原料茯砖茶活性成分及微生物多样性分析[J]. 食品科学, 2020, 41(24): 69-77. doi: 10.7506/spkx1002-6630-20190927-333
    [27] 周莉. Comamonas aquatica LNL短程反硝化特性研究以及脱氮机理探索[D]. 南京: 南京大学, 2012.
    [28] HUA F, WANG H. Factors influencing crude oil biodegradation by Pseudomonas sp. DG17[J]. Asian Journal of Chemistry, 2014, 26(15): 4637-4642. doi: 10.14233/ajchem.2014.16149
    [29] LODDERS N, KÄMPFER P. A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids[J]. Systematic and Applied Microbiology, 2012, 35(4): 246-252. doi: 10.1016/j.syapm.2012.03.006
    [30] MURAT J, GRENOUILLET F, REBOUX G, et al. Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator's lung[J]. Applied and Environmental Microbiology, 2012, 78(1): 34-41. doi: 10.1128/AEM.06230-11
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回