Diversity Research of Microbial in Water-based Metalworking Fluids
-
摘要: 微生物污染会缩减金属加工液使用寿命。细菌比真菌更容易在金属加工液中滋生。所有样本共检测出细菌2门、2纲、5目、6科、10属和14种,而真菌为4门、8纲、10目、14科、15属和17种,真菌多样性更丰富,但只出现在细菌污染严重的样本中。种水平下,弗氏柠檬酸杆菌(Citrobacter_freundii)、unclassified_g_Citrobacter、unclassified_f_Enterobacteriaceae被确定为优势细菌,且检出细菌以革兰氏阴性菌为主;真菌以未知真菌(unclassified_k_Fungi)和Fusarium_petroliphilum为主。微生物污染的金属加工液存在威胁操作人员健康的风险。Abstract: The service life of metalworking fluids can be shortened by existence of microorganism, and it is necessary to explore the composition of microbial communities in metalworking fluids. Three different methods were measured to determine the best one to separate microorganisms from metal working fluids. The concentration of microorganisms can be increased by the mikrocount combi method which has the optimal separation result. Under the help of Illumina MiSeq high-throughput sequencing, the composition of the microbial diversity of metalworking fluid samples at the 6 levels of phylum, class, order, family, genus, and species were completed respectively. Moreover, bacteria were detected in six groups of samples, while fungus were discovered in only two groups. Meanwhile, it was easier for bacteria to thrive in metalworking fluids than fungi, and fungi was only existed in samples with high bacterial contamination. A total of 2 phyla, 2 classes, 5 orders, 6 families, 10 genera and 14 species of bacteria were detected in all samples, while 4 phyla, 8 classes, 10 orders, 14 families, 15 genera and 17 species of fungi were also detected, which means that the fungal diversity is more abundant. Citrobacter_freundii_g_Citrobacter, unclassified_g_Citrobacter, unclassified_f_Enterobacteriaceae were identified as the dominant bacteria, and most of bacteria detected were Gram-negative. The composition of the metalworking fluid will affect the type of bacteria. All detected bacteria can destroy the stability of the metal working fluid through different ways, which shorten its service life. The dominant fungi were unclassified_k_Fungi and Fusarium_petroliphilum. The health of operators will be harmed by metalworking fluids with microbial contamination.
-
Key words:
- metalworking fluids /
- microorganism /
- diversity /
- bacteria /
- fungi
-
表 1 样本采集信息
Table 1. Details of sample collection
Sample Collection time Collection
locationTemperature/ ℃ Time has been used/month pH COD
/ (mg·L)−1QX1 2020.01 Minhang, Shanghai 3~9 3 7.88 60429 QX2 2020.06 Hefei, Anhui 23~31 10 6.34 81417 QX3 2020.05 Weifang, Shangdong 12~26 5 6.59 78816 CJ 2021.03 Wuhu, Anhui 8~17 6 6.95 66242 JX 2021.03 Lishui, Zhejiang 10~20 15 5.72 80538 WF 2020.08 Weifang, Shangdong 23~32 5 7.42 113574 表 2 分离前后体系细菌数量
Table 2. The concentration of bacteria before and after separation
Sample Concentration
/(CFU/mL)Original emulsion 104 Sample after demulsification 10 Sample after centrifugation 104 Samlpe after mikrocount combi method 106 表 3 金属加工液微生物多样性统计
Table 3. The diversity of microbial in water-based metalworking fluids
Sample Microorganism Phylum Class Order Family Genus Species OTU QX1 Bacteria 1 1 1 2 2 2 3 Fungi / / / / / / / QX2 Bacteria 1 1 2 3 5 5 5 Fungi 4 7 9 12 13 14 23 QX3 Bacteria 1 1 2 3 4 4 5 Fungi / / / / / / / CJ Bacteria 1 1 2 2 3 3 3 Fungi / / / / / / / JX Bacteria 2 2 4 4 4 4 5 Fungi 4 6 6 6 7 7 8 WF Bacteria 2 2 4 5 5 7 9 Fungi / / / / / / / -
[1] 周佩, 李昀, 江鹏, 等. 轧制油泥资源化工艺研究[J]. 环境污染与防治, 2020, 42(5): 575-578+585. [2] WICKRAMASINGHE K, SASAHARA H, RAHIM E, et al. Recent advances on high performance machining of aerospace materials and composites using vegetable oil-based metal working fluids[J]. Journal of Cleaner Production, 2021, 310(10): 127459. [3] MOHAMED O, AMARPREET S, RASHMI W, et al. Recent developments and performance review of metal working fluids[J]. Tribology International, 2017, 114(3): 389-401. [4] 李春风, 罗新民. 金属加工液中控制微生物方法初探[J]. 润滑油, 2005, 20(1): 21-24. doi: 10.3969/j.issn.1002-3119.2005.01.005 [5] 唐晓林. 乳化型水基金属加工液生物稳定性的研究[D]. 沈阳: 东北大学, 2004. [6] 赵同强, 吴家兵, 祁成, 等. 某机械加工车间金属加工染情况调查及原因初探[J]. 中国工业医学杂志, 2013, 26(1): 43-45. [7] TRAFNY E, LEWANDOWSKI R, KOZŁOWSKA K, et al. Microbial contamination and biofilms on machines of metal industry using metalworking fluids with or without biocides[J]. International Biodeterioration & Biodegradation, 2015, 99(2): 31-38. [8] 李庆宏,陈景浩,申媛媛,等. 切削液中类产碱假单胞菌对铝合金腐蚀行为的影响[J]. 表面技术, 2021, 50(5): 269-280. [9] 李庆宏, 杨懿, 吴泽奇, 等. 切削液的微生物劣化对碳钢耐腐蚀行为的影响[J]. 润滑与密封, 2020, 45(10): 14-21. doi: 10.3969/j.issn.0254-0150.2020.10.003 [10] GILBERT Y, VEILLETTE M, DUCHAINE C. Metalworking fluids biodiversity characterization[J]. Journal of Applied Microbiology, 2010, 108(2): 437-449. doi: 10.1111/j.1365-2672.2009.04433.x [11] KAPOOR R, YADAV J. Expanding the mycobacterial diversity of metalworking fluids (MWFs): Evidence showing MWF colonization by Mycobacterium abscessus[J]. FEMS microbiology ecology, 2012, 79(2): 392-399. doi: 10.1111/j.1574-6941.2011.01227.x [12] ELŻBIETA T. Microorganisms in metalworking fluids: Current issues in research and management[J]. International Journal of Occupational Medicine and Environmental Health, 2013, 26(1): 4-15. [13] MARCHAND G, LAVOIE J, RACINE L, et al. Evaluation of bacterial contamination and control methods in soluble metalworking fluids[J]. Journal of occupational and environmental hygiene, 2010, 7(6): 358-366. doi: 10.1080/15459621003741631 [14] LUCCHESI E, EGUCHI S, MORAES A. Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrates[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(5): 743-748. [15] SAHA R, DONOFRIO R. The microbiology of metalworking fluids[J]. Applied Microbiology and Biotechnology, 2012, 94(5): 1119-1130. doi: 10.1007/s00253-012-4055-7 [16] 冯万里, 王沥东, 何伟煜, 等. 冷冻解冻法废切削液破乳及其影响因素[J]. 华东理工大学学报(自然科学版), 2017, 43(3): 358-362. [17] 程晓迪. 粘土矿物与锰氧化菌的吸附特性及对细菌生长和Mn(Ⅱ)氧化的影响[D]. 华中农业大学, 2011. [18] 中华人民共和国生态环境部. 水质 细菌总数的测定 平皿计数法: HJ 1000—2018[S]. 2018. [19] 邓桃, 袁青松, 周涛, 等. 一株玉米赤霉烯酮高效降解细菌的筛选与降解条件研究[J]. 中国中药杂志, 2021, 46(20): 5240-5246. [20] 肖苗苗, 张红娟, 赵芳, 等. 小麦/玉米轮作田根际微生物多样性分析[J]. 微生物学通报, 10.13344/j. microbiol. china. 210360. [21] 李鹏洋, 安启睿, 王新皓, 等. 辽河四平段流域河流沉积物微生物群落多样性和结构分析[J]. 环境科学, 10.13227/j. hjkx. 202107032. [22] 郑立伟, 赵阳阳, 王一冰, 等. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 10.13344/j. microbiol. china. 210583. [23] MAINA S, KACHRIMANIDOU V, LADAKIS D, et al. Evaluation of 1, 3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate[J]. Environmental science and pollution research international, 2019, 26(35): 35523-35532. doi: 10.1007/s11356-019-05485-4 [24] 朱作鑫. 水基纳米轧制液制备及润滑模型研究[D]. 北京科技大学, 2015. [25] 吴辰. 没食子酸及其烷基酯在水包油型乳状液中的抗氧化作用及其与α-生育酚相互作用机理研究[D]. 南昌大学, 2016. [26] 曾桥, 吕生华, 李祥, 等. 不同原料茯砖茶活性成分及微生物多样性分析[J]. 食品科学, 2020, 41(24): 69-77. doi: 10.7506/spkx1002-6630-20190927-333 [27] 周莉. Comamonas aquatica LNL短程反硝化特性研究以及脱氮机理探索[D]. 南京大学, 2012. [28] HUA F, WANG H. Factors Influencing Crude Oil Biodegradation by Pseudomonas sp. DG17[J]. Asian Journal of Chemistry, 2014, 26(15): 4637-4642. doi: 10.14233/ajchem.2014.16149 [29] LODDERS N, KÄMPFER P. A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids[J]. Systematic and Applied Microbiology, 2012, 35(4): 246-252. doi: 10.1016/j.syapm.2012.03.006 [30] MURAT J, GRENOUILLET F, REBOUX G, et al. Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator's lung[J]. Applied and environmental microbiology, 2012, 78(1): 34-41. doi: 10.1128/AEM.06230-11 -