高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

水煤浆流变性和表面张力对其微观破裂的影响

赵曼 许治嘉 赵辉 许建良 李伟锋 刘海峰

赵曼, 许治嘉, 赵辉, 许建良, 李伟锋, 刘海峰. 水煤浆流变性和表面张力对其微观破裂的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210920001
引用本文: 赵曼, 许治嘉, 赵辉, 许建良, 李伟锋, 刘海峰. 水煤浆流变性和表面张力对其微观破裂的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210920001
ZHAO Man, XU Zhijia, ZHAO Hui, XU Jianliang, LI Weifeng, LIU Haifeng. Influence of Rheological Property and Surface Tension on the Micro Breakup of Coal Water Slurry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210920001
Citation: ZHAO Man, XU Zhijia, ZHAO Hui, XU Jianliang, LI Weifeng, LIU Haifeng. Influence of Rheological Property and Surface Tension on the Micro Breakup of Coal Water Slurry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210920001

水煤浆流变性和表面张力对其微观破裂的影响

doi: 10.14135/j.cnki.1006-3080.20210920001
基金项目: 国家自然科学基金(21878095)
详细信息
    作者简介:

    赵曼(1999—),女,河北石家庄人,硕士生,主要从事多相流气液雾化的研究。E-mail: 1298962601@qq.com

    通讯作者:

    赵辉,E-mail: zhaohui@ecust.edu.cn

  • 中图分类号: O359+.1

Influence of Rheological Property and Surface Tension on the Micro Breakup of Coal Water Slurry

  • 摘要: 以神华煤和华电煤为原料制备了质量分数为58%~62%的水煤浆,使用旋转流变仪、静/动态表面张力仪、高速摄像机和图像处理软件等研究了水煤浆理化参数对其微观破裂过程的影响。水煤浆属于剪切变稀的非牛顿流体,采用Herschel-Bulkley模型建立了水煤浆流变关系式;与静态表面张力不同,水煤浆的动态表面张力随着特征气泡时间的增加先减小后增加,表面张力最小值出现在200 ms附近;获得了基于水煤浆流变性和动态表面张力函数的水煤浆微观破裂特征直径与时间的关系式。

     

  • 图  1  煤粉的粗、细颗粒粒度分布

    Figure  1.  Size distribution of coarse and fine particles of pulverized coal

    图  2  浆体微观破裂实验示意图

    Figure  2.  Schematic of slurry micro breakup experimental equipment

    1—Coal water slurry and nozzle;2—High speed camera;3—Computer

    图  3  水煤浆黏度随剪切速率的变化

    Figure  3.  Variation of viscosity of coal water slurry with shear rate

    图  4  不同质量分数水煤浆的表面张力变化情况(其中水平线为静态表面张力)

    Figure  4.  Surface tension of coal water slurry (Where the horizontal line is the static surface tension)

    图  5  水煤浆动态表面张力实验值与拟合值对比

    Figure  5.  Comparison of experimental value with fitted value of dynamic surface tension of coal water slurry

    图  6  水煤浆喉部直径(Dm)示意图

    Figure  6.  Schematic diagram of the diameter (Dm) of the coal water slurry throat

    图  7  典型水煤浆破裂实验照片

    Figure  7.  Photograph of typical breakup experiment of coal water slurry (w=60%, Huadian coal)

    图  8  水煤浆喉部直径随时间变化关系(不同颜色表示为3次实验结果)

    Figure  8.  Relationship between the diameter of the coal water slurry throat and time (Different colors represent the results of three experiments)

    图  9  不同煤种和浓度条件下水煤浆喉部直径实验值与拟合值(式(5))对比

    Figure  9.  Comparison of experimental and fitted values (Eq. 5) of the diameter of coal water slurry

    表  1  煤粉颗粒粒度及水煤浆质量分数

    Table  1.   Particle size of pulverized coal and mass fraction of coal water slurry

    SampleD32 /μm D43 /μmw(Slurry)/%
    Coarse particle sizeFine particle sizeCoarse particle sizeFine particle size
    Shenhua coal90.110.126539.460
    62
    Huadian coal22.88.5512931.058
    60
    下载: 导出CSV

    表  2  水煤浆的Herschel-Bulkley模型参数

    Table  2.   Model parameters of Herschel-Bulkley model for coal water slurry

    Samplew(Slurry)/% $ {\tau _{\rm{o}}} $/PaK/(Pa·sn)n
    Shenhua coal600.0240.790.88
    620.0361.100.76
    Huadian coal580.0190.760.94
    600.0770.940.93
    下载: 导出CSV
  • [1] CZERNEK K, HYRYCZ M, KRUPINSKA A, et al. State-of-the-art review of effervescent-swirl atomizers[J]. Energies, 2021, 14(10): 2876. doi: 10.3390/en14102876
    [2] YAN W C, DAVOODI P, TONG Y W, et al. Computational study of core-shell droplet formation in coaxial electrohydrodynamic atomization process[J]. AIChE Journal,2016, 62(12): 4259-4276.
    [3] 赵志伟, 苏永升. 不同出口角度扩压器的内部流动及离心压缩机级性能数值研究[J]. 华东理工大学学报(自然科学版), 2017(2): 266-272.
    [4] 石仲璟, 王学生, 陈琴珠. 乙氧基化反应喷嘴雾化和反应性能[J]. 华东理工大学学报(自然科学版), 2017, 43(2): 273-279.
    [5] 吴兆伟, 赵辉, 吴欣洁, 等. 液体射流内部气泡对黏性流体气流式雾化的影响[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 392-400.
    [6] 孙春华, 宁智, 乔信起, 等. 气泡雾化喷嘴泡状流出口喷雾脉动特征[J]. 化工学报, 2018, 69(10): 4253-4260.
    [7] 叶宏程, 甘云华, 江政纬, 等. 乙醇荷电喷雾对冲燃烧的火焰特性[J]. 化工学报, 2019, 70(12): 4787-4794.
    [8] MEIERHOFER F, MÄDLER L, FRITSCHING U. Nanoparticle evolution in flame spray pyrolysis: Process design via experimental and computational analysis[J]. AIChE Journal, 2020, 66(2): e16885.
    [9] 杨自力, 郜彩云, 龚斐然, 等. 运行压力对超声雾化溶液除湿系统性能的影响[J]. 化工学报, 2020, 71(S1): 129-135.
    [10] 施智雄, 潘科玮, 平力, 等. 喷嘴雾化参数轨迹图像法测量实验研究[J]. 化工学报, 2020, 71(8): 3527-3534.
    [11] RAYLEIGH L. On the instability of jets[J]. The Proceedings of the London Mathematical Society, 1878, 10: 4-13.
    [12] WEBER C. Zum zerfall eines flussigkeitstrahles[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1931, 11: 136-141.
    [13] REITZ R D. Mechanism of atomization of a liquid jet[J]. Physics of Fluids, 1982, 25(10): 1730. doi: 10.1063/1.863650
    [14] EGGERS J. Nonlinear dynamics and breakup of free-surface flows[J]. Reviews of Modern Physics, 1997, 69(3): 865-929. doi: 10.1103/RevModPhys.69.865
    [15] ANNA S L, MCKINLEY G H. Elasto-capillary thinning and breakup of model elastic liquids[J]. Journal of Rheology, 2001, 45(1): 115-138. doi: 10.1122/1.1332389
    [16] TIRTAATMADJA V, MCKINLEY G H, COOPER-WHITE J J. Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4): 043101. doi: 10.1063/1.2190469
    [17] BHAT P P, APPATHURAI S, HARRIS M T, et al. Formation of beads-on-a-string structures during break-up of viscoelastic filaments[J]. Nature Physics, 2010, 6(8): 625-631. doi: 10.1038/nphys1682
    [18] CASTREJÓN-PITA A A, CASTREJON-PITA J R, HUTCHINGS I M. Breakup of liquid filaments[J]. Physical Review Letters, 2012, 108(7): 074506. doi: 10.1103/PhysRevLett.108.074506
    [19] CASTREJÓN-PITA J R, CASTREJÓN-PITA A A, THETE S S, et al. Plethora of transitions during breakup of liquid filaments[J]. Proceedings of The National Academy of Sciences of The United States of America, 2015, 112(15): 4582-4587. doi: 10.1073/pnas.1418541112
    [20] SATTLER R, GIER S, EGGERS J, et al. The final stages of capillary break-up of polymer solutions[J]. Physics of Fluids, 2012, 24(2): 023101. doi: 10.1063/1.3684750
    [21] CHANG Q, ZHANG M Z, BAI F Q, et al. Instability analysis of a power law liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198: 10-17. doi: 10.1016/j.jnnfm.2013.04.001
    [22] WEICKGENANNT C, ROISMAN I V, TROPEA C. Pinch-off of a stretching viscous filament and drop transport[J]. New Journal of Physics, 2015, 17(8): 083059. doi: 10.1088/1367-2630/17/8/083059
    [23] LAD V N, MURTHY Z V P. Breakup of free liquid jets influenced by external mechanical vibrations[J]. Fluid Dynamics Research, 2017, 49(1): 015503. doi: 10.1088/0169-5983/49/1/015503
    [24] 马修元, 段钰锋, 刘猛, 等. 水焦浆的流变特性与壁面滑移效应[J]. 化工学报, 2012, 63(1): 51-58. doi: 10.3969/j.issn.0438-1157.2012.01.007
    [25] 程晨, 薛志村, 郭庆华, 等. 撞击气流床气化炉内雾化过程中颗粒运动特性[J]. 化工学报, 2019, 70(12): 4536-4545.
    [26] GVOZDYAKOV D, ZENKOV A. Improvement of atomization characteristics of coal-water slurries[J]. Energy, 2021, 230(10): 120900.
    [27] NICOLAS M. Experimental study of gravity-driven dense suspension jets[J]. Physics of Fluids, 2002, 14(10): 3570-3576. doi: 10.1063/1.1504447
    [28] FURBANK R J, MORRIS J F. An experimental study of particle effects on drop formation[J]. Physics of Fluids, 2004, 16(5): 1777-1790. doi: 10.1063/1.1691034
    [29] FURBANK R J, MORRIS J F. Pendant drop thread dynamics of particle-laden liquids[J]. International Journal of Multiphase Flow, 2007, 33(4): 448-468. doi: 10.1016/j.ijmultiphaseflow.2006.02.021
    [30] ZHAO H, LIU H F, XU J L, et al. Inhomogeneity in breakup of suspensions[J]. Physics of Fluids, 2015, 27(6): 063303. doi: 10.1063/1.4922582
    [31] MOON J Y, LEE S J, AHN K H, et al. Filament thinning of silicone oil/poly (methyl methacrylate) suspensions under extensional flow[J]. Rheologica Acta, 2015, 54(8): 705-714. doi: 10.1007/s00397-015-0861-z
    [32] HARICH R, DEBLAIS A, COLIN A, et al. Depletion forces induce visco-elasto-capillary thinning of non-Brownian suspensions[J]. Europhysics Letters, 2016, 114(5): 58006. doi: 10.1209/0295-5075/114/58006
    [33] MULARSKI J, MODLIŃSKI N. Entrained flow coal gasification process simulation with the emphasis on empirical devolatilization models optimization procedure[J]. Applied Thermal Engineering, 2020, 175: 115401. doi: 10.1016/j.applthermaleng.2020.115401
    [34] 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734.
    [35] GUO F, LIU H, ZHAO X, et al. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering[J]. Fuel, 2021, 292(11): 120274.
    [36] EGGERS J. Universal pinching of 3D axisymmetric free-surface flow[J]. Physical Review Letters, 1993, 71(21): 3458-3460. doi: 10.1103/PhysRevLett.71.3458
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回