Influence of Rheological Property and Surface Tension on the Micro Breakup of Coal Water Slurry
-
摘要: 为以神华煤和华电煤为原料制备了质量分数为58%-62%的水煤浆,使用旋转流变仪、静/动态表面张力仪、高速摄像机和图像处理软件等研究了水煤浆理化参数对其微观破裂过程的影响。水煤浆属于剪切变稀的非牛顿流体,采用Herschel-Bulkley模型建立了水煤浆流变关系式;与静态表面张力不同,水煤浆的动态表面张力随着特征气泡时间的增加先减小后增加,表面张力最小值出现在100~200 ms附近;获得了基于水煤浆流变性和动态表面张力函数的水煤浆微观破裂特征直径随时间关系式。Abstract: In the process of the slurry breakup, the throat of the liquid bridge keeps shrinking. When the minimum characteristic diameter of the liquid bridge is close to the size of the solid particle, the slurry will exhibit the complex variation characteristics in the process of time, which is significantly different from pure liquid. Therefore, the study of the micro breakup characteristics of the slurry is helpful to reveal the atomization mechanism and improve the simulation model of slurry. Here Shenhua coal and Huadian coal are used as the raw materials to prepare coal water slurry with a mass concentration range of 58% -62 %(mass fraction). The influence of the physical and chemical parameters of coal water slurry on its microscopic breakup process has been studied by the rotary rheometer, the static surface tension meter, the dynamic surface tension meter, the high-speed camera, the image processing software, and so on. Coal water slurry is a shear thinning non-Newtonian fluid. So in this paper the Herschel-Bulkley model is used to establish the rheological relationship of coal water slurry. Unlike the static surface tension, the dynamic surface tension of coal water slurry decreases with the increase of the characteristic bubble time. After increasing, the minimum surface tension appears around between 100 ms and 200 ms. Finally based on the rheological properties and the dynamic surface tension of coal water slurry, the relationship between the change of the characteristic diameter of coal water slurry micro-breakup and the time of breakup is obtained.
-
Key words:
- coal water slurry /
- micro breakup /
- surface tension /
- viscosity /
- rheology
-
表 1 煤粉颗粒粒径及水煤浆浓度
Table 1. Particle size of pulverized coal and concentration of coal water slurry
Sample D32 /μm D43 /μm w(Slurry)/% Coarse particle size Fine particle size Coarse particle size Fine particle size Shenhua coal 90.1 10.1 265 39.4 60 62 Huadian coal 22.8 8.55 129 31.0 58 60 表 2 水煤浆Herschel-Bulkley模型参数
Table 2. Madel parameters of Herschel-Bulkley model for coal water slurry
Sample w(Slurry)/% $ {\tau _0} $/Pa K/(Pa·sn) n Shenhua coal 60 0.024 0.79 0.88 62 0.036 1.10 0.76 Huadian coal 58 0.019 0.76 0.94 60 0.077 0.94 0.93 -
[1] CZERNEK K, HYRYCZ M, KRUPINSKA A,et al. State-of-the-art review of effervescent-swirl atomizers[J]. Energies, 2021, 14(10): 2876. doi: 10.3390/en14102876 [2] YAN W C, DAVOODI P, TONG Y W, et al. Computational study of core-shell droplet formation in coaxial electrohydrodynamic atomization process[J]. AIChE Journal,2016, 62(12): 4259-4276. [3] 赵志伟, 苏永升. 不同出口角度扩压器的内部流动及离心压缩机级性能数值研究[J]. 华东理工大学学报(自然科学版), 2017(2): 266-272. [4] 石仲璟, 王学生, 陈琴珠. 乙氧基化反应喷嘴雾化和反应性能[J]. 华东理工大学学报(自然科学版), 2017, 43(2): 273-279. [5] 吴兆伟, 赵辉, 吴欣洁, 等. 液体射流内部气泡对黏性流体气流式雾化的影响[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 392-400. [6] 孙春华, 宁智, 乔信起, 等. 气泡雾化喷嘴泡状流出口喷雾脉动特征[J]. 化工学报, 2018, 69(10): 4253-4260. [7] 叶宏程, 甘云华, 江政纬, 等. 乙醇荷电喷雾对冲燃烧的火焰特性[J]. 化工学报, 2019, 70(12): 4787-4794. [8] MEIERHOFER F, MÄDLER L, FRITSCHING U. Nanoparticle evolution in flame spray pyrolysis-Process design via experimental and computational analysis[J]. AIChE Journal,2020, 66(2): e16885. [9] 杨自力, 郜彩云, 龚斐然, 等. 运行压力对超声雾化溶液除湿系统性能的影响[J]. 化工学报, 2020, 71(S1): 129-135. [10] 施智雄, 潘科玮, 平力, 等. 喷嘴雾化参数轨迹图像法测量实验研究[J]. 化工学报, 2020, 71(8): 3527-3534. [11] RAYLEIGH L. On the instability of jets[J]. The Proceedings of the London Mathematical Society, 1878, 10: 4-13. [12] WEBER C. Zum zerfall eines flussigkeitstrahles[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1931, 11: 136-141. [13] REITZ R D. Mechanism of atomization of a liquid jet[J]. Physics of Fluids, 1982, 25(10): 1730. doi: 10.1063/1.863650 [14] EGGERS J. Nonlinear dynamics and breakup of free-surface flows[J]. Reviews of Modern Physics, 1997, 69(3): 865-929. doi: 10.1103/RevModPhys.69.865 [15] ANNA S L, MCKINLEY G H. Elasto-capillary thinning and breakup of model elastic liquids[J]. Journal of Rheology, 2001, 45(1): 115-138. doi: 10.1122/1.1332389 [16] TIRTAATMADJA V, MCKINLEY G H, COOPER-WHITE J J. Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4): 043101. doi: 10.1063/1.2190469 [17] BHAT P P, APPATHURAI S, HARRIS M T, et al. Formation of beads-on-a-string structures during break-up of viscoelastic filaments[J]. Nature Physics, 2010, 6(8): 625-631. doi: 10.1038/nphys1682 [18] CASTREJÓN-PITA A A, CASTREJON-PITA J R, HUTCHINGS I M. Breakup of liquid filaments[J]. Physical Review Letters, 2012, 108(7): 074506. doi: 10.1103/PhysRevLett.108.074506 [19] CASTREJÓN-PITA J R, CASTREJÓN-PITA A A, THETE S S, et al. Plethora of transitions during breakup of liquid filaments[J]. Proceedings of The National Academy of Sciences of The United States of America, 2015, 112(15): 4582-4587. doi: 10.1073/pnas.1418541112 [20] SATTLER R, GIER S, EGGERS J, et al. The final stages of capillary break-up of polymer solutions[J]. Physics of Fluids, 2012, 24(2): 023101. doi: 10.1063/1.3684750 [21] CHANG Q, ZHANG M Z, BAI F Q, et al. Instability analysis of a power law liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198: 10-17. doi: 10.1016/j.jnnfm.2013.04.001 [22] WEICKGENANNT C, ROISMAN I V, TROPEA C. Pinch-off of a stretching viscous filament and drop transport[J]. New Journal of Physics, 2015, 17(8): 083059. doi: 10.1088/1367-2630/17/8/083059 [23] LAD V N, MURTHY Z V P. Breakup of free liquid jets influenced by external mechanical vibrations[J]. Fluid Dynamics Research, 2017, 49(1): 015503. doi: 10.1088/0169-5983/49/1/015503 [24] 马修元, 段钰锋, 刘猛, 等. 水焦浆的流变特性与壁面滑移效应[J]. 化工学报, 2012, 63(1): 51-58. doi: 10.3969/j.issn.0438-1157.2012.01.007 [25] 程晨, 薛志村, 郭庆华, 等. 撞击气流床气化炉内雾化过程中颗粒运动特性[J]. 化工学报, 2019, 70(12): 4536-4545. [26] GVOZDYAKOV D, ZENKOV A. Improvement of atomization characteristics of coal-water slurries[J]. Energy, 2021, 230(10): 120900. [27] NICOLAS M. Experimental study of gravity-driven dense suspension jets[J]. Physics of Fluids, 2002, 14(10): 3570-3576. doi: 10.1063/1.1504447 [28] FURBANK R J, MORRIS J F. An experimental study of particle effects on drop formation[J]. Physics of Fluids, 2004, 16(5): 1777-1790. doi: 10.1063/1.1691034 [29] FURBANK R J, MORRIS J F. Pendant drop thread dynamics of particle-laden liquids[J]. International Journal of Multiphase Flow, 2007, 33(4): 448-468. doi: 10.1016/j.ijmultiphaseflow.2006.02.021 [30] ZHAO H, LIU H F, XU J L, et al. Inhomogeneity in breakup of suspensions[J]. Physics of Fluids, 2015, 27(6): 063303. doi: 10.1063/1.4922582 [31] MOON J Y, LEE S J, AHN K H, et al. Filament thinning of silicone oil/poly (methyl methacrylate) suspensions under extensional flow[J]. Rheologica Acta, 2015, 54(8): 705-714. doi: 10.1007/s00397-015-0861-z [32] HARICH R, DEBLAIS A, COLIN A, et al. Depletion forces induce visco-elasto-capillary thinning of non-Brownian suspensions[J]. Europhysics Letters, 2016, 114(5): 58006. doi: 10.1209/0295-5075/114/58006 [33] MULARSKI J, MODLIŃSKI N. Entrained flow coal gasification process simulation with the emphasis on empirical devolatilization models optimization procedure[J]. Applied Thermal Engineering, 2020, 175: 115401. doi: 10.1016/j.applthermaleng.2020.115401 [34] 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. [35] GUO F, LIU H, ZHAO X, et al. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering[J]. Fuel, 2021, 292(11): 120274. [36] EGGERS J. Universal pinching of 3D axisymmetric free-surface flow[J]. Physical Review Letters, 1993, 71(21): 3458-3460. doi: 10.1103/PhysRevLett.71.3458 -