Numerical Simulation of Gas-Solid Flow Characteristics in Industrial Polyethylene Fluidized Bed
-
摘要: 采用计算颗粒流体力学(CPFD)的数值模拟方法,对工业级聚乙烯流化床内的气固流动特性进行了冷态模拟,并利用Matlab的图像处理功能将图像的像素点与模拟网格进行对应来计算流化床内的气泡大小。从流化床流动结构、颗粒、气泡3个角度,研究了不同气速、不同初始物料量对工业级聚乙烯流化床的气固流动特性的影响。结果表明:从颗粒的轴径向分布情况可以看出,工业流化床内部的边壁效应明显较弱,密相区整体呈现较为均匀的颗粒分布;气速对于流化床气固流动的影响较大,当气速为0.46 m/s时,流化床内密相区的颗粒分布最为均匀,整体的流动较好;初始床层高度主要影响流化后密相区的高度,对于床层膨胀率的影响较小。Abstract: Based on computational particle fluid dynamics (CPFD), an industrial grade polyethylene fluidized bed model in cold state was established to simulate the gas-solid flow characteristics in fluidized bed, and the image processing function of MATLAB was used to calculate the bubble size in the fluidized bed by matching the image pixels with the simulated grid. The effects of gas velocity and initial material quantity on the gas-solid flow characteristics of industrial grade polyethylene fluidized bed were studied from the perspectives of fluidized bed flow structure, particles and bubble. The results show that compared with the equipment in pilot and experimental stages, the side-wall effect in the industrial fluidized bed is obviously weak, and the dense-phase zone presents a more uniform particle distribution. The gas velocity has a great influence on the gas-solid flow in the fluidized bed. Under the operating condition of 0.46 m/s gas velocity, the particle distribution in the dense-phase zone is the most uniform, and the bulk flow becomes steady. The initial bed height mainly affects the height of the dense phase zone after fluidization, but has little effect on the bed expansion rate.
-
Key words:
- two-phase flow /
- fluidized-bed /
- numerical simulation /
- CPFD /
- image processing
-
表 1 气相的组成
Table 1. Composition of gas phase
Gas composition Mole fraction H2 0.065 C2H4 0.350 C4H8 0.140 N2 0.445 表 2 聚乙烯颗粒的组成
Table 2. Composition of polyethylene particles
Particle size
distribution/μmMass fraction/% Average diameter/μm 840 40.2 831 420~840 31.5 600 250~420 12.3 322 150~250 6.5 190 104~150 3.8 120 74~104 1.8 89 表 3 模拟参数及计算条件
Table 3. Simulation parameters and calculation conditions
Operating temperature/K Operating pressure/MPa Mean particle diameter/μm Particles density/(kg·m−3) Maximum allowable volume fraction of particles Initial apparent density of bed particles/(kg·m−3) Initial bed height/m Normal recovery coefficient of particle-wall collision 361 2.3 580 920 0.6 480 8 0.9 Gas density/
(kg·m−3)Gas viscosity/
(Pa·s)Gas velocity/
(m·s−1)Drag force
modelTurbulence
modelTime step/s Time average calculation start time/s Simulated time/s 22 1.507×10−5 0.46 Gidaspow LES* 0.001 20 40 $*$—Large eddy simulation model 表 4 不同初始床层高度的膨胀率
Table 4. Expansion rates at different initial bed heights
Initial bed height/m Height of dense zone/m Bed expansion rate 4 6.539 1.635 6 10.412 1.735 8 13.860 1.733 -
[1] MULHAUPT R. Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts[J]. Macromolecular Chemistry and Physics, 2003, 204(2): 289-327. doi: 10.1002/macp.200290085 [2] SCHNEIDERBAUER S, PUTTINGER S, PIRKER S, et al. CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors[J]. Chemical Engineering Journal, 2015, 264(2015): 99-112. [3] 李延頔, 何雪莲, 黄宇, 等. 单链聚乙烯在石墨烯二维表面结晶的分子模拟[J]. 华东理工大学学报(自然科学版), 2016, 42(5): 594-600. [4] SOARES J B P, MCKENNA T F. Polyolefin Reaction Engineering[M]. Germany: WILEY-VCH, 2013. [5] 车煜. 基于计算流体力学气相法聚乙烯流化床反应器的多尺度模型化研究[D]. 上海: 华东理工大学, 2016. [6] NING Y, TAO J, LI Z. Progress of gas-phase polyethylene technique and catalyst[J]. Petrochemical Technology & Application, 2008, 26(5): 480-485. [7] 郭宜祜, 王喜忠. 流化床基本原理及其工业应用[M]. 北京: 化学工业出版社, 1980. [8] CHE Y, TIAN Z, LIU Z, et al. CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process[J]. Powder Technology, 2015, 278: 94-110. doi: 10.1016/j.powtec.2015.02.022 [9] UPENDER H, KISHORE K A. Effect of materials on hydrodynamics of cone-shaped inverse fluidized bed by experimental and CFD simulations[J]. Materials Today:Proceedings, 2020, 21(3): 1502-1512. [10] KARIMI S, MANSOURPOUR Z, MOSTOUFI N, et al. CFD-DEM study of temperature and concentration distribution in a polyethylene fluidized bed reactor[J]. Particulate Science and Technology, 2011, 29(2): 163-178. doi: 10.1080/02726351003758451 [11] DEEN N G, ANNALAND M V, HPEF M A V D, et al. Review of discrete particle modeling of fluidized beds[J]. Chemical Engineering Science, 2007, 62(1/2): 28-44. doi: 10.1016/j.ces.2006.08.014 [12] 曾佳, 黄婷, 刘斌斌, 等. 基于计算流体力学的中药流化床制粒工艺数值模拟与实验验证[J]. 中国新药杂志, 2021, 30(1): 62-72. [13] 马华庆, 赵永志. 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报(工学版), 2020, 54(7): 1347-1354. [14] 任安星, 唐天琪, 王天宇, 等. 脉动流化床内球柱形颗粒流动行为研究[J]. 工程热物理学报, 2021, 42(3): 651-656. [15] ANDREWS M. J, O'ROURKE P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. doi: 10.1016/0301-9322(95)00072-0 [16] 王坤, 朱丽云, 李安俊, 等. 湍动流化床颗粒流动特性的数值模拟[J]. 石油化工设备技术, 2021, 42(1): 5-10. doi: 10.3969/j.issn.1006-8805.2021.01.002 [17] 张贤, 葛荣存, 张守玉, 等. CFB密相区大颗粒横向扩散系数的CPFD模拟[J]. 化工学报, 2017, 68(10): 3725-3732. [18] 任喜熙, 陈祁, 杨海平, 等. 基于CPFD方法的流化床生物质气化数值模拟[J]. 化工学报, 2020, 71(12): 5763-5773. [19] ROKKAM R G, FOX R O, MUHLE M E. Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors[J]. Powder Technology, 2010, 203(2): 109-124. doi: 10.1016/j.powtec.2010.04.002 [20] VERMA V, PADDING J T, DEEN N G, et al. Effect of bed size on hydrodynamics in 3-D gas-solid fluidized beds[J]. Aiche Journal, 2015, 61(5): 1492-1506. doi: 10.1002/aic.14738 [21] GOBIN A, NEAU H, SIMONIN O, et al. Fluid dynamic numerical simulation of a gas phase polymerization reactor[J]. International Journal for Numerical Methods in Fluids, 2003, 43(10/11): 1199-1220. [22] GIDASPOW D. Multiphase flow and fluidization: Continuum and kinetic theory description[J]. Journal of Non-Newtonian Fluid Mechanics, 1994, 55(2): 207-208. doi: 10.1016/0377-0257(94)80007-3 [23] 陈巨辉, 王帅, 于广滨. 流化床技术模拟方法研究[M]. 北京: 科学出版社, 2016. [24] 韩颖. 基于计算流体力学的烯烃聚合反应器模型化与模拟研究[D]. 杭州: 浙江大学, 2013. [25] DEHNAVI M A, SHAHHOSSEINI S, HASHEMABADi S H, et al. CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors[J]. International Communications in Heat Mass Transfer, 2010, 37(4): 437-442. doi: 10.1016/j.icheatmasstransfer.2009.12.005 [26] 兰斌, 徐骥, 刘志成, 等. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J]. 化工学报, 2021, 72(1): 521-533. [27] 王铁峰, 王金福, 杨卫国, 等. 三相循环流化床中气泡大小及其分布的实验研究[J]. 化工学报, 2001, 52(3): 197-203. doi: 10.3321/j.issn:0438-1157.2001.03.004 [28] SHAFFER F, GOPALAN B, BREAULT R W, et al. High speed imaging of particle flow fields in CFB risers[J]. Powder Technology, 2013, 242: 86-99. doi: 10.1016/j.powtec.2013.01.012 [29] 陆时杰, 陈彩霞, 夏梓洪, 等. 多晶硅流化床反应器内气固两相流场与气泡尺寸分布的TFM-KTGF模拟[J]. 华东理工大学学报(自然科学版), 2015, 41(6): 758-764. doi: 10.3969/j.issn.1006-3080.2015.06.005 [30] YAN H, JIANG P, CHEN B. Digital image processing technique based on MATLAB toolbox[J]. Microcomputer Information, 2010, 26: 214-216. [31] BAI D, SHIBUYA E, MASUDA Y, et al. Flow structure in a fast fluidized bed[J]. Chemical Engineering Science, 1996, 51(6): 957-966. doi: 10.1016/0009-2509(95)00331-2 [32] ZHAO J, LV Y, ZHOU Z, et al. A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network[J]. Neural Networks, 2017, 94: 115-124. doi: 10.1016/j.neunet.2017.06.013 [33] 秦霁光. 聚式流化床的膨胀[J]. 化学工程, 1979(5): 70-73. -