高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

电催化氧化脱除气田采出水中硫化物

张舸 金艳 李丽 韩昫身 高荔 于建国

张舸, 金艳, 李丽, 韩昫身, 高荔, 于建国. 电催化氧化脱除气田采出水中硫化物[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210609003
引用本文: 张舸, 金艳, 李丽, 韩昫身, 高荔, 于建国. 电催化氧化脱除气田采出水中硫化物[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210609003
ZHANG Ge, JIN Yan, LI Li, HAN Xushen, GAO Li, YU Jianguo. Removing Sulfide in Gas Field Produced Water by Electrooxidation[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210609003
Citation: ZHANG Ge, JIN Yan, LI Li, HAN Xushen, GAO Li, YU Jianguo. Removing Sulfide in Gas Field Produced Water by Electrooxidation[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210609003

电催化氧化脱除气田采出水中硫化物

doi: 10.14135/j.cnki.1006-3080.20210609003
基金项目: 中国石油科技创新基金(2020D-5007-0502);上海市青年科技英才扬帆计划(20YF1409500);中央高校基本科研业务费专项基金(50321022017008)
详细信息
    作者简介:

    张舸:张 舸(1996—),女,河北唐山人,硕士生,主要研究方向:水污染控制。E-mail:gzhang@mail.ecust.edu.cn

    通讯作者:

    于建国, E-mail:jgyu@ecust.edu.cn

  • 中图分类号: X741

Removing Sulfide in Gas Field Produced Water by Electrooxidation

  • 摘要: 为了防止含硫气田采出水中硫化物危害环境和人类健康,必须对其进行处理。采用污染小、效率高的电化学氧化法对高盐、高硬气田采出水的脱硫过程进行研究。选用Ti/RuO2-SnO2-IrO2阳极材料,在极板间距0.05 m,电流密度200 A/m2,曝气量1 L/min,初始pH 9-10的条件下,模拟采出水(300 mg/L初始硫化物,2.5% NaCl)处理35 min后,脱硫率高达99.2%以上,单位能耗为5.52 kWh/kgS2-。此外,本研究发现,针对高硬体系下的阴极结垢问题,利用倒极方法可有效去除结垢物,保证装置稳定运行。

     

  • 图  1  三电极系统

    Figure  1.  Three-electrode system

    图  2  电催化氧化反应装置示意图

    Figure  2.  Schematic diagram of the electrocatalytic oxidation reaction device

    1-DC power; 2-Cathode; 3-Anode; 4-Simulated gas field produced water; 5-Electrolytic cell

    图  3  不同阳极材料在0.1 M Na2S+0.1 M NaCl中的循环伏安曲线

    Figure  3.  Cyclic voltammetry curves of different anodes in 0.1 M Na2S+0.1 M NaCl

    图  4  不同阳极材料的硫化物脱除效果

    Figure  4.  Sulfide removal effect with different anodes

    图  5  极板间距对硫化物脱除的影响

    Figure  5.  Effect of electrode distance on sulfide removal

    图  6  电流密度对硫化物脱除的影响

    Figure  6.  Effect of current density on sulfide removal

    图  7  曝气量对硫化物脱除的影响

    Figure  7.  Effect of aeration rate on sulfide removal

    图  8  NaCl含量对硫化物脱除的影响

    Figure  8.  Effect of NaCl concentration on sulfide removal

    图  9  不同初始浓度硫化物的脱除效果

    Figure  9.  Effect of sulfide concentration on sulfide removal

    图  10  硫化物在不同pH下的存在形式

    Figure  10.  Existing forms of sulfide at different pH

    图  11  初始pH对硫化物脱除的影响

    Figure  11.  Effect of initial pH on sulfide removal

    图  12  不同初始pH下阳极板的硫单质沉积情况

    Figure  12.  Sulfur deposition on anode at different initial pH

    图  13  不同初始pH下反应过程中硫化物存在形式的变化

    Figure  13.  Changes of sulfide existing form during the reaction with different initial pH

    The initial pH of (a), (b), (c), (d), (e), (f) are 7, 8, 9, 10, 11, 12, 13, respectively

    图  15  倒极前后阴极板上的结垢情况

    Figure  15.  Scaling on the cathode before and after reversing electrodes

    图  14  钙镁离子对硫化物脱除的影响

    Figure  14.  Effect of Ca2+ and Mg2+ on sulfide removal

    表  1  川渝地区典型气田含硫情况及气田水中硫化物浓度[1]

    Table  1.   H2S content of typical gas fields and sulfide concentration in gas field water in Sichuan and Chongqing

    H2S content of typical
    sour gas field/(10−3kg·m−3)
    Sulfide mass concentration in gas
    field water/(mg·L−1)
    Classification of sulfide-
    containing gas field water
    Sulfide mass concentration range/(mg·L−1)
    Shapingchang (0.1-0.4)0.1-32.0Low< 20
    Xihekou (1.0-4.0)4.5-72.0Medium20-100
    Longwangmiao (4.0-12.0)100.0-150.0High100-200
    Puguang (180.0-250.0)600.0-800.0Extra high> 200
    Yuanba (80.0-85.0)800.0-2500.0
    Longgang (20.0-80.0)820.0-1600.0
    下载: 导出CSV

    表  2  磨溪206#采出水水样水质

    Table  2.   Composition of gas field produced water from Moxi 206#

    No.pHConductivity/
    (mS·cm−1)
    ${\;\rho}_{ \rm{Sulfide}}$/
    (mg·L−1)
    ${\;\rho}_{ \rm{COD}} $/
    (mg·L−1)
    ${\;\rho}_{ \rm{NH_3-N}} $/
    (mg·L−1)
    ${\;\rho}_{ \rm{Cl^{-1}}} $/
    (104mg·L−1)
    ${\;\rho}_{ \rm{Na^{+}}} $/
    (104mg·L−1)
    ${\;\rho}_{ \rm{Ca^{2+}}} $/
    (mg·L−1)
    ${\;\rho}_{ \rm{Mg^{2+}}} $/
    (mg·L−1)
    16.4343.930388.060.91.711.0958868.2
    26.3253.634875.075.82.091.3173093.6
    36.7341.628725070.11.581.0744351.4
    46.3753.230027577.02.091.3073686.4
    56.8039.328650.057.31.480.98642748.3
    66.7946.126312573.41.811.1461775.5
    下载: 导出CSV

    表  3  不同阳极材料的价格

    Table  3.   Prices of different anodes

    Anode typePrice/
    (103CNY·m−2)
    Anode typePrice/
    (103CNY·m−2)
    Ti/TiO2-RuO2-IrO210.19Ti/IrO2-RuO221.02
    Ti/IrO2-Ta2O525.48Ti/RuO2-SnO2-IrO211.47
    Ti/IrO2-Ta2O5-SnO226.75Ti/SnO2-Sb2O37.643
    Ti/RuO2-SnO29.554Ti/SnO2-Sb2O3-IrO229.30
    下载: 导出CSV

    表  4  不同极板间距下平均槽电压和能耗对比

    Table  4.   Comparison of average cell voltages and energy consumption with different electrode distances

    Electrode distance/mTreated water volume/LAverage cell voltage/VTime for complete removal
    of sulfide/103s
    Energy consumption
    /(kWh/kgS2-)
    Energy consumption per ton
    of water
    /(kWh·t−1)
    0.030.1904.322.0458.718.3
    0.050.3405.043.8471.822.4
    0.070.4805.875.3483.526.0
    0.090.6206.487.0293.629.1
    0.110.7607.438.2210231.7
    0.201.4311.415.015247.3
    Note: Initial sulfide concentration is 311.3 mg/L. Current is 1.425 A, i.e. current density is 200 A/m2.
    下载: 导出CSV

    表  5  不同电流密度下达到相同脱硫率(70%)时的平均槽电压和能耗对比

    Table  5.   Average cell voltages and energy consumption at different current densities with the same sulfide removal ratio (70%)

    Current density
    /(A·m−2)
    Current/AAverage cell voltage/VTime for the same sulfide removal ratio/103sEnergy consumption per ton of water/(kWh·t−1)
    1000.6944.873.6011.3
    1501.0405.292.7013.8
    2001.3875.942.2216.9
    2501.7346.221.8018.0
    3002.0817.131.6222.3
    下载: 导出CSV

    表  6  不同NaCl含量下的单位能耗

    Table  6.   Energy consumption with different NaCl concentrations

    NaCl concentration
    /%
    Current
    /A
    Average cell voltage/VThe amount of removed sulfide after 50 min/10−5kgEnergy consumption
    /(kWh/kgS2−)
    0.251.38712.57.01206
    0.501.38710.87.11176
    1.01.3878.017.48124
    2.01.3876.368.4387.2
    2.51.3875.998.4482.1
    5.01.3875.249.2965.2
    7.51.3874.568.8159.8
    101.3874.328.9355.9
    下载: 导出CSV

    表  7  不同初始硫化物浓度的动力学方程拟合模型

    Table  7.   Fitting kinetic equations for different initial sulfide concentrations

    Initial sulfide concentration/(mg·L−1)Fitting kinetic equationReaction rate constant
    ·(mg·(L·s−1))
    R2
    174.0c=174.0−0.1556t0.15560.9994
    326.9c=326.9−0.1561t0.15610.9996
    398.9c=398.9−0.1593t0.15930.9995
    511.2c=511.2−0.1727t0.17270.9993
    565.5c=565.5−0.1687t0.16870.9978
    下载: 导出CSV
  • [1] 翁邦华, 杨杰, 陈昌介, 等. 气田水中硫化物控制指标及处理措施[J]. 天然气工业, 2019, 39(3): 109-115.
    [2] 李彦俊, 魏宏斌. 废水处理中硫化物去除技术的研究与应用[J]. 净水技术, 2010, 29(6): 9-12,56.
    [3] 闫玉乐, 王凤伟, 周博涵, 等. 油气田含硫污水处理技术[J]. 广东化工, 2017, 44(19): 108-109.
    [4] 诸爱士, 兰益周, 唐晓璐. 活性二氧化氯处理含硫模拟废水[J]. 浙江科技学院学报, 2012, 24(4): 310-315.
    [5] 陈国强, 曹建国, 汪卫东, 等. 冶炼废水中硫化物的处理实验研究[J]. 中国矿业, 2015, 24(S2): 109-111.
    [6] 徐洪斌, 柳理芹, 杨苗青, 等. 臭氧氧化处理含硫皮革废水的实验研究[J]. 工业水处理, 2016, 36(1): 52-54.
    [7] 宋玲, 程志强, 蓝艳, 等. 元坝气田采出水除硫工艺技术应用实践[J]. 工业用水与废水, 2018, 49(4): 43-46.
    [8] SHIVASANKARAN N, BALAN A V, SANKAR S P, et al. Removal of hydrogen sulphide and odour from tannery & textile effluents[J]. Materials Today:Proceedings, 2020, 21: 777-781.
    [9] ALTAŞ L, BÜYÜKGÜNGÖR H. Sulfide removal in petroleum refinery wastewater by chemical precipitation[J]. Journal of Hazardous Materials, 2008, 153(1/2): 462-469.
    [10] 杨艺程, 刘仁军, 肖乐业, 等. 含硫废水的理论分析及脱硫试验研究[J]. 燃料与化工, 2012, 43(6): 41-43,46.
    [11] 周永生, 陆惠刚, 黄燕华, 等. 沉淀法预处理硫辛酸厂高质量浓度含硫废水试验研究[J]. 常州大学学报(自然科学版), 2014, 26(4): 59-62.
    [12] 陈一萍, 谢志洞. 碳纳米管对水中硫化物吸附性能的研究[J]. 皮革与化工, 2013, 30(6): 6-9.
    [13] 戴一民, 黄壁成. 生物质基多孔吸附模拟含硫废水[J]. 明胶科学与技术, 2016, 36(2): 92-99.
    [14] BALASUBRAMANI U, VENKATESH R, SUBRAMANIAM S, et al. Alumina/activated carbon nano-composites: synthesis and application in sulphide ion removal from water[J]. Journal of Hazardous Materials, 2017, 340: 241-252.
    [15] 周西臣, 曲虎, 刘静, 等. 气提法去除油田污水中H2S的实验研究[J]. 工业水处理, 2012, 32(1): 66-69.
    [16] 梁宏宝, 韩东, 陈洪涛, 等. 吹脱法处理油田集输系统污水中H2S小型工艺试验[J]. 油气田地面工程, 2017, 36(9): 24-28.
    [17] 韩金枝, 付腾飞, 王燕. 无色硫细菌处理含硫废水的试验研究[J]. 环境科技, 2010, 23(5): 4-7.
    [18] FENG S, LIN X, TONG Y, et al. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018, 264: 244-252.
    [19] SUN Z, PANG B, XI J, et al. Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation[J]. Bioresource Technology, 2019, 290: 1-9.
    [20] 王琳, 金艳, 宋兴福, 等. 三维电催化氧化处理对硝基苯酚废水[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 289-295,315.
    [21] 常华, 周理, 苏伟. 硫化氢吸收液的电化学分解条件研究[J]. 天然气工业, 2006, 26(8): 138-140,176.
    [22] 田建勋, 祁贵生, 刘有智, 等. 碳酸钠溶液吸收硫化氢富液的直接电解工艺[J]. 化工进展, 2015, 34(2): 325-329.
    [23] 崔磊. 电化学法脱除溶液中硫离子的研究[D]. 成都: 西南石油大学, 2012.
    [24] VAIOPOULOU E, PROVIJN T, PRÉVOTEAU A, et al. Electrochemical sulfide removal and caustic recovery from spent caustic streams[J]. Water Research, 2016, 92: 38-43.
    [25] NTAGIA E, FISET E, HONG L T C, et al. Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery[J]. Journal of Hazardous Materials, 2020, 388: 1-9.
    [26] 张宁. 电化学阳极氧化硫化物的研究[D]. 南京: 南京理工大学, 2012.
    [27] 曹志斌. 三维电极反应器的设计及应用研究[D]. 南京: 南京航空航天大学, 2009.
    [28] 李雪, 冯岩, 于衍真. 三维电极体系在废水处理中的应用[J]. 中国资源综合利用, 2016, 34(4): 29-33.
    [29] ZHANG C, JIANG Y, LI Y, et al. Three-dimensional electrochemical process for wastewaters treatment: A general review[J]. Chemical Engineering Journal, 2013, 228: 455-467.
    [30] 王婷婷. 硫化钠废碱液的催化氧化研究[D]. 北京: 北京化工大学, 2011.
    [31] WATERSTON K, BEJAN D, BUNCE N J. Electrochemical oxidation of sulfide ion at a boron-doped diamond anode[J]. Journal of Applied Electrochemistry, 2007, 37: 367-373.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 网络出版日期:  2021-09-29

目录

    /

    返回文章
    返回