高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜

龚信瑀 杨峥 刘璨 王晓暄 马晓华

龚信瑀, 杨峥, 刘璨, 王晓暄, 马晓华. 电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210609002
引用本文: 龚信瑀, 杨峥, 刘璨, 王晓暄, 马晓华. 电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210609002
GONG Xin-yu, YANG Zheng, LIU Can, WANG Xiao-xuan, MA Xiao-hua. Preparation of MOFs/chitosan positively charged nanofiltration membrane by electrospray method[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210609002
Citation: GONG Xin-yu, YANG Zheng, LIU Can, WANG Xiao-xuan, MA Xiao-hua. Preparation of MOFs/chitosan positively charged nanofiltration membrane by electrospray method[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210609002

电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜

doi: 10.14135/j.cnki.1006-3080.20210609002
基金项目: 国家自然科学基金-面上基金(21978081),上海市自然科学基金(21ZR1417500)
详细信息
    作者简介:

    龚信瑀(1995—),男,硕士生,主要研究方向为膜科学与技术。E-mail:YshinGong@163.com

    通讯作者:

    马晓华,E-mail:xiaohuama@ecust.edu.cn

  • 中图分类号: TQ028.8

Preparation of MOFs/chitosan positively charged nanofiltration membrane by electrospray method

  • 摘要: 将壳聚糖的直接成膜性与电喷雾技术结合,并引入金属有机骨架(MOFs),制备了NH2-UIO-66(Zr)/壳聚糖荷正电纳滤膜,实现对Ni2+的高效分离和富集。通过电喷雾技术可有效解决传统壳聚糖纳滤膜成膜周期长、膜层较厚、通量较低等问题。实验表明,与传统涂覆工艺相比,电喷雾法制备的壳聚糖复合膜在保持较高截留率的情况下,渗透性提高了634%。然而,单一壳聚糖基质膜受trade-off效应影响,分离性能难以进一步提升。引入NH2-UIO-66(Zr)作为填料可有效缓解trade-off效应,所制备的复合膜在不牺牲截留率的情况下,通量进一步提升38%(水通量为4.7×10-5 L·m-2·h-1·Pa-1,对NiCl2截留率为92%)。

     

  • 图  1  NH2-UIO-66(Zr)的结构图(a, b)及结构式(c)

    Figure  1.  Schematic (a, b)and structural formula (c) of NH2-UIO-66(Zr).

    图  2  电喷雾法制备MOFs/壳聚糖膜示意图。

    Figure  2.  Schematic diagram of MOFs/chitosan membrane prepared by electrospraying.

    图  3  NH2-UIO-66(Zr)的XRD谱图(a)、 FT-IR光谱(b)、UV-vis DRS(c)光谱以及SEM图(d)

    Figure  3.  XRD pattern(a), FT-IR spectrum(b), UV-vis DRS spectrum(c) and SEM image(d) of NH2-UIO-66(Zr)

    图  4  PSF基底(a),MCS-0膜(b)和MCS-5膜(c)的SEM图

    Figure  4.  SEM images of PSF substrate(a), MCS-0 membrane(b) and MCS-5 membrane(c)

    图  5  PSF基底(a),MCS-0(b)和 MCS-5膜(c)的水接触角测试

    Figure  5.  Water contact angle test of PSF substrate(a), MCS-0(b) and MCS-5 membrane(c)

    图  6  PSF基底,壳聚糖膜和MCS-5膜的ATR-FTIR光谱。

    Figure  6.  ATR-FTIR spectra of PSF substrate, chitosan membrane and MCS-5 membrane.

    图  7  MCS-5膜的EDS谱图。

    Figure  7.  EDS mapping of MCS-5 membrane.

    图  8  不同注射速度的壳聚糖膜分离性能(0.5 g/L, 4×105 Pa)。

    Figure  8.  Separating performance of chitosan membranes with different spraying speed (0.5 g/L, 4×105 Pa).

    图  9  负载量对MCS膜分离性能的影响(0.5 g/L, 4×105 Pa)

    Figure  9.  Effect of loadings on the separation performance of MCS membrane (0.5 g/L, 4×105 Pa)

    图  10  不同工艺制备的膜分离性能对比(0.5 g/L, 4×105 Pa)

    Figure  10.  Comparison of separation performance of membranes prepared by different processes (0.5 g/L, 4×105 Pa)

    图  11  (a) 进料浓度(4×105 Pa)和(b)测试压力(0.5 g/L)对MCS-5分离NiCl2的影响。

    Figure  11.  Effect of (a) feed concentration (4×105 Pa) and (b) test pressure (0.5 g/L) on the separation performance of MCS-5 on NiCl2 solution.

    图  12  MCS-5膜对不同重金属的分离性能(0.5 g/L, 4×105 Pa)

    Figure  12.  Separation performance of MCS-5 membrane for different heavy metals (0.5 g/L, 4×105 Pa)

    表  1  Zeta电位测试

    Table  1.   Zeta potential test

    ItemZeta potential
    (pH=4)/mV
    Zeta potential
    (pH=6)/mV
    Zeta potential
    (pH=8)/mV
    PSF substrate−15.1±0.4−30.88±0.82−39.06±0.42
    MCS-0 membrane8.85±0.327.33±0.354.05±0.02
    MCS-5 membrane7.34±0.376.14±0.013.86±0.02
    下载: 导出CSV
  • [1] ZHOU M Y, ZHANG P, FANG L F, et al. A positively charged tight UF membrane and its properties for removing trace metal cations via electrostatic repulsion mechanism[J]. Journal of Hazardous Materials, 2019, 373: 168-175. doi: 10.1016/j.jhazmat.2019.03.088
    [2] PEYDAYESH M, MOHAMMADI T, NIKOUZAD S K. A positively charged composite loose nanofiltration membrane for water purification from heavy metals[J]. Journal of Membrane Science, 2020: 611.
    [3] ZHANG Y, ZHANG S, CHUNG T S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration[J]. Environmental Science and Technology, 2015, 49(16): 10235-10242. doi: 10.1021/acs.est.5b02086
    [4] 曾行, 杨座国. 氧化石墨烯的制备及其负载纳滤膜性能[J]. 华东理工大学学报(自然科学版), 2018, 44(5): 644-649.
    [5] 崔秋花, 许振良, 潘鹤林, 等. 纳滤膜脱除稀盐酸中Ca2+和Mg2+[J]. 华东理工大学学报(自然科学版), 2020, 46(1): 10-15.
    [6] YAN C, ZHANG S H, LIU C, et al. Preparation, morphologies, and properties of positively charged quaternized poly(phthalazinone ether sulfone ketone) nanofiltration membranes[J]. Journal of Applied Polymer Science, 2009, 113(3): 1389-1397. doi: 10.1002/app.30143
    [7] YU L, ZHANG Y T, WANG Y M, et al. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres[J]. Journal of Hazardous Materials, 2015, 287: 373-383. doi: 10.1016/j.jhazmat.2015.01.057
    [8] YU L, DENG J M, WANG H X, et al. Improved salts transportation of a positively charged loose nanofiltration membrane by introduction of poly(ionic liquid) functionalized hydrotalcite nanosheets[J]. Acs Sustainable Chemistry and Engineering, 2016, 4(6): 3292-3304. doi: 10.1021/acssuschemeng.6b00343
    [9] XU P, WANG W, QIAN X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. doi: 10.1016/j.desal.2018.10.019
    [10] CHEN Q, YU P P, HUANG W Q, et al. High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal[J]. Journal of Membrane Science, 2015, 492: 312-321. doi: 10.1016/j.memsci.2015.05.068
    [11] GU K F, WANG S H, LI Y H, et al. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability[J]. Journal of Membrane Science, 2019, 581: 214-223. doi: 10.1016/j.memsci.2019.03.057
    [12] LIU F, MA B R, ZHOU D, et al. Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal[J]. Reactive and Functional Polymers, 2015, 86: 191-198. doi: 10.1016/j.reactfunctpolym.2014.09.003
    [13] KUMAR R, ISMAIL A F, KASSIM M A, et al. Modification of PSf/PIAM membrane for improved desalination applications using Chitosan coagulation media[J]. Desalination, 2013, 317: 108-115. doi: 10.1016/j.desal.2013.03.008
    [14] KUMAR R, ISLOOR A M, ISMAIL A F, et al. Polysulfone-Chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties[J]. Rsc Advances, 2013, 3(21): 7855-7861. doi: 10.1039/c3ra00070b
    [15] MA X H, YANG Z, YAO Z K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. Journal of Membrane Science, 2017, 525: 269-276. doi: 10.1016/j.memsci.2016.11.015
    [16] HE Y T, MIAO J, CHEN S Q, et al. Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate[J]. Rsc Advances, 2019, 9(8): 4361-4369. doi: 10.1039/C8RA09855G
    [17] ZHU F, ZHENG Y M, ZHANG B G, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials, 2021: 401.
    [18] CHOWDHURY M R, STEFFES J, HUEY B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-685. doi: 10.1126/science.aar2122
    [19] MA X H, YANG Z, YAO Z K, et al. Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes[J]. Environmental Science and Technology Letters, 2018, 5(2): 117-122. doi: 10.1021/acs.estlett.7b00566
    [20] MA X H, GUO H, YANG Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570: 139-145.
    [21] GUILLERM V, KIM D, EUBANK J F, et al. A supermolecular building approach for the design and construction of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6141-6172. doi: 10.1039/C4CS00135D
    [22] YIN N, WANG K, WANG L Z, et al. Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal[J]. Chemical Engineering Journal, 2016, 306: 619-628. doi: 10.1016/j.cej.2016.07.064
    [23] NIK O G, CHEN X Y, KALIAGUINE S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2012, 413: 48-61.
    [24] CAO J L, SU Y L, LI Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation[J]. Journal of Membrane Science, 2018, 566: 268-277. doi: 10.1016/j.memsci.2018.08.068
    [25] ZHAO H, YANG X, XU R, et al. CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2[J]. Journal of Materials Chemistry A, 2018, 6(41): 20152-20160. doi: 10.1039/C8TA05970E
    [26] WANG N X, ZHANG G J, WANG L, et al. Pervaporation dehydration of acetic acid using NH2-UiO-66/PEI mixed matrix membranes[J]. Separation and Purification Technology, 2017, 186: 20-27. doi: 10.1016/j.seppur.2017.05.046
    [27] ZHAO Y Y, LIU Y L, WANG X M, et al. Impacts of metal-organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes[J]. Acs Applied Materials and Interfaces, 2019, 11(14): 13724-13734. doi: 10.1021/acsami.9b01923
    [28] SU Y, ZHANG Z, LIU H, et al. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction[J]. Applied Catalysis B-Environmental, 2017, 200: 448-457. doi: 10.1016/j.apcatb.2016.07.032
    [29] HAO X Q, JIN Z L, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental, 2017, 210: 45-56. doi: 10.1016/j.apcatb.2017.03.057
    [30] SHEN L J, LIANG S J, WU W M, et al. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols[J]. Journal of Material Chemistry A, 2013, 1(37): 11473-11482. doi: 10.1039/c3ta12645e
    [31] WEN G, GAO X Y, GUO Z G. Simple fabrication of a multifunctional inorganic paper with high efficiency separations for both liquids and particles[J]. Journal of Material Chemistry A, 2018, 6(43): 21524-21531. doi: 10.1039/C8TA08782B
    [32] ZHU J Y, HOU J W, YUAN S S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance[J]. Journal of Material Chemistry A, 2019, 7(27): 16313-16322. doi: 10.1039/C9TA02299F
    [33] HE M L, WANG L, LV Y T, et al. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal[J]. Chemical Engineering Journal, 2020: 389.
    [34] ZHANG H, TAYMAZOV D, LI M P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019: 592.
    [35] JIRARATANANON R, SUNGPET A, LUANGSOWAN P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt[J]. Desalination, 2000, 130(2): 177-83. doi: 10.1016/S0011-9164(00)00085-0
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 网络出版日期:  2021-09-22

目录

    /

    返回文章
    返回