Simulation Calculation of 1.8 ×106 t/a Methanol Radial Reactor in the Capacity Expansion and Revamping
-
摘要: 基于某能源公司的百万吨甲醇生产项目的扩能改造,建立模型并分析计算。针对甲醇径向反应器建立了绝热换热多层交叉一维拟均相数学模型,代入Aspen Plus软件中,实现双径向反应器串并联耦合工艺的模拟。结果表明,增加中心管开孔面积可有效减少较大流量下的穿孔压降;降低进气温度对降低反应器内部热点温度有效,但会增加循环气流量;改变1#反应器和2#反应器的新鲜气配比实际上是改变了反应器连接方式,减小2#反应器入塔气的氢碳体积比能调动装置生产能力。对改造后的工艺进一步优化,得到了最优生产条件,即1#反应器新鲜气体积分数0.800,入塔气温度235.0 ℃,此时产能达到了原工艺的130%。Abstract: For the capacity expansion and revamping of a 1.8×106 t/a Davy methanol production project of an energy company, a multilayer cross one-dimensional, quasi-homogeneous mathematical model was established for the adiabatic heat transfer of methanol radial reactor. The model was used in Aspen Plus to simulate the series-parallel coupling process of the dual radial reactor. We found that an increase in the area of the central pipe hole effectively reduced the pressure drop of the perforation at a large flow rate, and a decrease in the inlet temperature reduced the hot spot temperature but increased the circulating gas flow rate. Variation of the feed gas ratio substantially changed the connection mode of the reactor, and increased the methanol production of the 2# reactor. The optimum production conditions were obtained when the fresh gas ratio was 0.800 and the entry temperature was 235.0 ℃, leading to a production capacity enhancement of 130% with respect to the unoptimized process.
-
表 1 改造前后运行参数对比
Table 1. Comparison of operating parameters before and after process modification
Process Reactor Flow rate/(t·h−1) p/MPa T/℃ Yield of 93% crude methanol/(t·h−1) Fresh gas Inlet gas Before modification 1# 197.012 683.307 7.63 250.0 124.8 2# 49.253 608.893 8.05 250.0 116.0 After modification 1# 195.521 910.842 7.59 223.0 133.3 2# 114.290 899.938 7.94 223.0 153.9 表 2 改造前后模拟结果对比
Table 2. Comparison of simulation results before and after process modification
Process Stream Flow rate/
(t·h−1)T/℃ p/MPa $ {y}_{{\rm{H}_{2}O}} $ $ {y}_{{\rm{H}}_{2}} $ $ {y}_{\rm{CO}} $ $ {y}_{{\rm{CO}}_{2}} $ $ {y}_{{\rm{N}}_{2}} $ $ {y}_{{\rm{C{H}_{3}OH}}} $ Methanol
yield/(t·h−1)Before modification 204 545.337 286.4 7.59 0.0031 0.8355 0.0452 0.0100 0.0536 0.0525 138.65 212 468.124 278.9 8.02 0.0035 0.8527 0.0278 0.0088 0.0580 0.0490 119.85 After modification 204 910.595 264.2 7.55 0.0020 0.8512 0.0583 0.0163 0.0382 0.0340 158.94 212 875.841 263.3 7.87 0.0019 0.8417 0.0536 0.0162 0.0385 0.0339 158.37 -
[1] 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. [2] 车轶菲, 李涛, 张海涛. Cu/ZnO/Al2O3改性催化剂上CO2加氢制甲醇的本征动力学[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 326-333. [3] 巩强. 煤基甲醇制烯烃工艺技术的发展[J]. 化学工程与装备, 2020(11): 221-222, 241. [4] 蒋海金. Davy合成塔中心管改造提产能的应用[J]. 山西化工, 2018, 38(6): 142-145. [5] 孙晋东. 流程模拟在中煤榆林甲醇装置增产扩能改造中的应用[D]. 北京: 北京化工大学, 2017. [6] 赵月红, 温浩, 许志宏. Aspen Plus用户模型开发方法探讨[J]. 计算机与应用化学, 2003(4): 435-438. doi: 10.3969/j.issn.1001-4160.2003.04.024 [7] 顾杰. 草酸二甲酯加氢径向反应器数学模拟和工艺条件优化[D]. 上海: 华东理工大学, 2019. [8] WANG R, FAN Y, LU C. Gas axial dispersion behavior and gas residence time in the radial flow bed[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12203-12214. [9] 谢克昌, 房鼎业. 甲醇工艺学[M]. 北京: 化学工业出版社, 2010. [10] 房鼎业, 应卫勇, 朱炳辰. 径向流动甲醇合成反应器的数学模型与优化设计[J]. 高校化学工程学报, 1995(3): 244-251. [11] SHAHROKHI M, BAGHMISHEH G R. Modeling simulation and control of a methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2005, 60(15): 4275-4286. doi: 10.1016/j.ces.2004.12.051 [12] MANENTI F, CIERI S, RESTELLI M. Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2011, 66(2): 152-162. doi: 10.1016/j.ces.2010.09.036 [13] LUCKOS A, BUNT J R. Pressure-drop predictions in a fixed-bed coal gasifier[J]. Fuel, 2011, 90(3): 917-921. doi: 10.1016/j.fuel.2010.09.020 [14] HEGGS P J. Prediction of flow distributions and pressure changes in multi-layered annular packed beds[J]. Gas Separation and Purification, 1995, 9(4): 243-252. [15] MIRVAKILI A, RAHIMMPOUR M R. Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2015, 91: 1059-1070. [16] 马宏方, 刘殿华, 应卫勇, 等. 8 MPa下C307催化剂上甲醇合成反应的本征动力学[J]. 华东理工大学学报(自然科学版), 2008(1): 6-9, 28. [17] KAREERI A A, ZUGHBI H D, ALALI H H. Simulation of flow distribution in radial flow reactors[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2862-2874. [18] 刘长伟. JM DAVY甲醇装置改造中心管提高产能的探索[J]. 化工设计, 2018, 28(6): 13-16. doi: 10.3969/j.issn.1007-6247.2018.06.005 [19] PONZI P R, KAYE L A. Effect of flow maldistribution on conversion and selectivity in radial flow fixed-bed reactors[J]. AIChE Journal, 2010, 25(1): 100-108. [20] 戴天, 范洪明, 傅雨佳, 等. 基于软测量技术的Aspen Plus用户模型二次开发[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 533-539. [21] PUIG-GAMERO M, PIO D T, TARELHO L A C, et al. Simulation of biomass gasification in bubbling fluidized bed reactor using Aspen Plus[J]. Energy Conversion and Management, 2021, 235: 113981. doi: 10.1016/j.enconman.2021.113981 [22] 陆佳伟, 汤吉海, 张竹修, 等. Matlab与Aspen Plus软件交互实现和应用[J]. 计算机与应用化学, 2018, 35(1): 53-61. -