高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

1.8×106 t/a径向甲醇反应器扩能改造的模拟计算

赵雅琦 马宏方 张海涛 李涛

赵雅琦, 马宏方, 张海涛, 李涛. 1.8×106 t/a径向甲醇反应器扩能改造的模拟计算[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210608001
引用本文: 赵雅琦, 马宏方, 张海涛, 李涛. 1.8×106 t/a径向甲醇反应器扩能改造的模拟计算[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210608001
ZHAO Yaqi, MA Hongfang, ZHANG Haitao, LI Tao. Simulation Calculation of 1.8 ×106 t/a Methanol Radial Reactor in the Capacity Expansion[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210608001
Citation: ZHAO Yaqi, MA Hongfang, ZHANG Haitao, LI Tao. Simulation Calculation of 1.8 ×106 t/a Methanol Radial Reactor in the Capacity Expansion[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210608001

1.8×106 t/a径向甲醇反应器扩能改造的模拟计算

doi: 10.14135/j.cnki.1006-3080.20210608001
详细信息
    作者简介:

    赵雅琦(1995—),女,河北石家庄人,硕士生,研究方向为甲醇合成工艺改造。E-mail:15530798353@163.com

    通讯作者:

    李涛,E-mail:tli@ecust.edu.cn

  • 中图分类号: TQ536.9

Simulation Calculation of 1.8 ×106 t/a Methanol Radial Reactor in the Capacity Expansion

  • 摘要: 基于某能源公司的百万吨甲醇生产项目的扩能改造,建立模型并分析计算。针对甲醇径向反应器建立了绝热换热多层交叉一维拟均相数学模型,代入Aspen Plus软件中,实现双径向反应器串并联耦合工艺的模拟。结果表明,增加中心管开孔面积可有效减少较大流量下的穿孔压降;降低进气温度对降低反应器内部热点温度有效,但会增加循环气流量;改变新鲜气配比实际上是改变了反应器连接方式,减小2#反应器入塔气的氢碳比调动装置生产能力。对改造后的工艺进一步优化,得到了新鲜气配比0.8,入塔气温度235 ℃时生产条件最优,产能达到了原工艺的130%。

     

  • 图  1  微元选取

    Figure  1.  Selection of infinitesimal

    图  2  模拟系统计算框图

    Figure  2.  Block diagram of calculation flow for simulation system

    图  3  Davy甲醇合成工艺流程

    C201- Compressor; E101~E104- Heat exchanger; R101,R102- Reactor; V101,V102- Flash tank; 107- Feed stream; 206,214- Crude methanol; 207,217- Cyclic stream; 216- Exhausted gas; 201~205,208~213,215- Gas delivery stream

    Figure  3.  Davy methanol synthesis process flow chart

    图  4  中心管开孔面积变化对反应器内压降的影响

    Figure  4.  Effect of the change of central tube opening area on the pressure drop in the reactor

    图  5  中心管开孔面积对床层压降和穿孔压降的影响

    Figure  5.  Effect of central tube opening area on bed pressure drop and perforation pressure drop

    图  6  入塔气温度对反应器床层温度的影响

    Figure  6.  Effect of tower entry temperature on reactor bed temperature

    图  7  入塔气温度对反应器床层反应速率的影响

    Figure  7.  Effect of entry temperature on reaction rate of reactor bed

    图  8  入塔气温度对反应器甲醇产量及循环气量的影响

    Figure  8.  Effect of inlet temperature on methanol production and circulating gas flow rate in reactor

    图  9  新鲜气分配比例对反应器甲醇产量的影响

    Figure  9.  Effect of fresh gas distribution ratio on methanol yield of reactor  

    图  10  新鲜气分配比例对两台反应器循环比影响

    Figure  10.  Effect of fresh gas distribution ratio on cycle ratio of two reactors

    图  11  新鲜气分配比例对入塔气氢碳比影响

    Figure  11.  Effect of fresh gas distribution ratio on hydrogen - carbon ratio of tower gas

    图  12  新鲜气分配比例对反应器压降的影响

    Figure  12.  Effect of fresh gas distribution ratio on △P of reactor

    图  13  1#反应器不同入塔气温度(a)和新鲜气分配比例(b)对出塔气温度的影响及2#反应器不同入塔气温度(3)和新鲜气分配比例(4)对出塔气温度的影响

    Figure  13.  Effect of different inlet air temperature(a) and fresh air distribution ratio(b) on outlet air temperature of 1# reactor; Effect of different inlet air temperature(c) and fresh air distribution ratio(d) on outlet air temperature of 2# reactor

    图  14  不同入塔气温度和新鲜气分配比对甲醇产量的影响

    Figure  14.  Effect of different entry temperature and fresh gas distribution ratio on methanol output

    表  1  改造前后运行参数对比

    Table  1.   Comparison of operating parameters before and after process revamping

    StreamreactorFlow/(kg·h−1)Inlet gas
    pressure/MPa
    Inlet gas
    temperature/℃
    Methanol
    yield/(t·h−1)
    Fresh gasInlet gas
    Before process modification1#1970126833077.63250122.21
    2#492536088938.05250108.77
    After process modification1#1955219108427.59223121.62
    2#1142908999387.94223134.53
    下载: 导出CSV

    表  2  改造前后模拟结果对比

    Table  2.   Comparison of simulation results before and after process revamping

    StreamFlow/
    (kmol·h−1)
    T/℃p/MPa$ {y}_{{\rm{H}_{2}O}} $$ {y}_{{\rm{H}}_{2}} $$ {y}_{\rm{CO}} $$ {y}_{{\rm{CO}}_{2}} $$ {y}_{{\rm{N}}_{2}} $$ {y}_{{\rm{C{H}_{4}O}}} $Methanol
    yield/(t·h−1)
    Before process modification20482462286.47.590.00310.83550.04520.01000.05360.0525138.65
    21276416278.98.020.00350.85270.02780.00880.05800.0490119.85
    After process modification204145798264.27.550.00200.85120.05830.01630.03820.0340158.94
    212143722263.37.870.00190.84170.05360.01620.03850.0339158.37
    下载: 导出CSV
  • [1] 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020.
    [2] 车轶菲, 李涛, 张海涛. Cu/ZnO/Al2O3改性催化剂上CO2加氢制甲醇的本征动力学[J]. 华东理工大学学报(自然科学版), 2020, 46(03): 326-333.
    [3] 巩强. 煤基甲醇制烯烃工艺技术的发展[J]. 化学工程与装备, 2020(11): 221-222, 241.
    [4] 蒋海金. Davy合成塔中心管改造提产能的应用[J]. 山西化工, 2018, 38(6): 142-145.
    [5] 孙晋东. 流程模拟在中煤榆林甲醇装置增产扩能改造中的应用[D]. 北京: 北京化工大学, 2017.
    [6] 赵月红, 温浩, 许志宏. Aspen Plus用户模型开发方法探讨[J]. 计算机与应用化学, 2003(04): 435-438. doi: 10.3969/j.issn.1001-4160.2003.04.024
    [7] 顾杰. 草酸二甲酯加氢径向反应器数学模拟和工艺条件优化[D]. 上海: 华东理工大学, 2019.
    [8] WANG R, FAN Y, LU C. Gas axial dispersion behavior and gas residence time in the radial flow bed[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12203-12214.
    [9] 谢克昌, 房鼎业. 甲醇工艺学[M]. 北京: 化学工业出版社, 2010.
    [10] 房鼎业, 应卫勇, 朱炳辰. 径向流动甲醇合成反应器的数学模型与优化设计[J]. 高校化学工程学报, 1995(3): 244-251.
    [11] SHAHROKHI M, BAGHMISHEH G R. Modeling simulation and control of a methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2005, 60(15): 4275-4286. doi: 10.1016/j.ces.2004.12.051
    [12] MANENTI F, CIERI S, RESTELLI M. Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2011, 66(2): 152-162. doi: 10.1016/j.ces.2010.09.036
    [13] LUCKOS A, BUNT J R. Pressure-drop predictions in a fixed-bed coal gasifier[J]. Fuel, 2011, 90(3): 917-921. doi: 10.1016/j.fuel.2010.09.020
    [14] HEGGS P J. Prediction of flow distributions and pressure changes in multi-layered annular packed beds[J]. Fuel and Energy Abstracts, 1996, 37(3): 233-233.
    [15] MIRVAKILI A, RAHIMMPOUR M R. Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2015, 91: 1059-1070.
    [16] 马宏方, 刘殿华, 应卫勇, 等. 8 MPa下C307催化剂上甲醇合成反应的本征动力学[J]. 华东理工大学学报(自然科学版), 2008(1): 6-9, 28.
    [17] KAREERI A A, ZUGHBI H D, AL-ALI H H. Simulation of flow distribution in radial flow reactors[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2862-2874.
    [18] 刘长伟. JM DAVY甲醇装置改造中心管提高产能的探索[J]. 化工设计, 2018, 28(6): 13-16, 1. doi: 10.3969/j.issn.1007-6247.2018.06.005
    [19] PONZI P R, KAYE L A. Effect of flow maldistribution on conversion and selectivity in radial flow fixed‐bed reactors[J]. Aiche Journal, 2010, 25(1): 100-108.
    [20] 戴天, 范洪明, 傅雨佳, 等. 基于软测量技术的Aspen Plus用户模型二次开发[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 533-539.
    [21] PUIG-GAMERO M, PIO D T, TARELHO L A C, et al. Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®[J]. Energy Conversion and Management, 2021, 235: 113981. doi: 10.1016/j.enconman.2021.113981
    [22] 陆佳伟, 汤吉海, 张竹修, 等. Matlab与Aspen Plus软件交互实现和应用[J]. 计算机与应用化学, 2018, 35(1): 53-61.
    [23] 朱恺杰, 马宏方, 张海涛, 等. 二氧化碳加氢制甲醇轴向反应器模拟[J]. 天然气化工(C1化学与化工), 2020, 45(4): 76-81.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 网络出版日期:  2021-07-30

目录

    /

    返回文章
    返回