高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

溶剂挥发和相分离法制备环氧树脂基疏水涂层

解国庆 张衍 刘育建 方俊

解国庆, 张衍, 刘育建, 方俊. 溶剂挥发和相分离法制备环氧树脂基疏水涂层[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210531001
引用本文: 解国庆, 张衍, 刘育建, 方俊. 溶剂挥发和相分离法制备环氧树脂基疏水涂层[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210531001
XIE Guoqing, ZHANG Yan, LIU Yujian, FANG Jun. Preparation of Epoxy Resin-Based Hydrophobic Coating by Solvent Volatilization and Phase Separation[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210531001
Citation: XIE Guoqing, ZHANG Yan, LIU Yujian, FANG Jun. Preparation of Epoxy Resin-Based Hydrophobic Coating by Solvent Volatilization and Phase Separation[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210531001

溶剂挥发和相分离法制备环氧树脂基疏水涂层

doi: 10.14135/j.cnki.1006-3080.20210531001
基金项目: 中央高校基本科研业务费专项资金资助(JKD01211701)
详细信息
    作者简介:

    解国庆(1995-),女,安徽宿州人,硕士生,主要研究方向为疏水涂层的制备。E-mail:gqocto@outlook.com

    通讯作者:

    张衍,E-mail:yzhang@ecust.edu.cn

  • 中图分类号: TQ638

Preparation of Epoxy Resin-Based Hydrophobic Coating by Solvent Volatilization and Phase Separation

  • 摘要: 以氟硅改性的环氧树脂为基体,采用二甲苯/乙酸乙酯混合溶剂制备疏水涂层,研究氟硅含量、溶剂选择对涂层疏水性能和微观形貌的影响。结果表明,随着氟硅含量的增加,涂层的接触角逐渐变大。仅以二甲苯为溶剂时,制备的涂层表面较为光滑,接触角最高为105.0°;在二甲苯/乙酸乙酯体系中,由于溶剂挥发速率的差异,涂层表面形成了5~15 µm微孔。同时,氟硅与环氧链段发生遵循成核-增长机制的相分离,微孔中产生0.1~0.6 µm突起。涂层成膜过程中F和Si自发向外表面迁移以降低其表面能。当氟硅的含量(质量分数)增加到30%时,涂层表面微孔和孔内凸起可以截留更多的空气,涂层的最大接触角提高到115.5°,疏水性明显提高。并且涂层具有强附着力(5B)和高硬度(6H),表明其优良的应用性能。

     

  • 图  1  不同含量氟硅改性环氧树脂以二甲苯、二甲苯/乙酸乙酯为溶剂所获涂层的SEM图

    Figure  1.  SEM images of coatings prepared with different contents fluorosilicon modified epoxy in xylene and xylene/ethyl acetate solvents, respectively

    (a1), (a2)— 10%, xylene; (b1), (b2) — 30%, xylene; (c1), (c2) — 10%, xylene/ethyl acetate; (d1), (d2) — 30%, xylene/ethyl acetate

    图  2  二甲苯/乙酸乙酯混合溶剂制备的氟硅改性环氧涂层成膜过程示意图

    Figure  2.  Processing schematic of fluorosilicon modified epoxy coating prepared in xylene/ethyl acetate solvent

    图  3  30%氟硅改性环氧涂层不同位置的EDS谱图

    Figure  3.  EDS spectra of 30% fluorosilicate modified epoxy coating at different positions

    (a)—Inner surface of the hole; (b)—Outer surface of the hole

    图  4  溶剂体系对氟硅改性环氧树脂涂层接触角的影响

    Figure  4.  Effect of solvent type on the contact angle for fluorosilicon modified epoxy coating

    图  5  不同溶剂体系制备的氟硅改性环氧涂层的接触角照片

    Figure  5.  Contact angles of fluorosilicon modified epoxy coatings prepared in different solvent

    表  1  二甲苯和乙酸乙酯的Hansen溶解度组合参数与比挥发速度

    Table  1.   Hansen solubility parameters and specific volatilization rates of xylene and ethyl acetate

    solventδd/(J·cm−31/2δp/(J·cm−31/2δh/(J·cm−31/2δa)/(J·cm−31/2Specific volatilization rateb)
    Xylene17.81.03.118.275
    Ethyl acetate15.85.37.218.1430
    a) Hansen solubility parameter is composed of dispersion force (δd), polarity force (δp) and hydrogen bonding force (δh), and satisfies ${{\rm{\delta }}^{\rm{2}}}{\rm{ = \delta }}_{\rm{d}}^{\rm{2}}{\rm{ + \delta }}_{\rm{p}}^{\rm{2}}{\rm{ + \delta }}_{\rm{h}}^{\rm{2}}$
    b) Specific volatilization rate = Mass/(Area × Time), generally, the volatilization rate of butyl acetate is taken as the standard, which is recorded as 100; and the ratio of the volatilization rate of other solvents to that of butyl acetate is the specific volatilization rate of the solvent.
    下载: 导出CSV

    表  2  w=30%氟硅改性环氧涂层不同位置的表面元素相对含量(EDS)分析

    Table  2.   Surface element relative content of 30wt% fluorosilicate modified epoxy coating at different positions

    Surface of the holew/%
    COSiSitheoryFFtheory
    Inner surface56.4417.0423.9810.442.541.63
    Outer surface68.7116.8611.9310.442.501.63
    下载: 导出CSV
  • [1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [2] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. doi: 10.1006/anbo.1997.0400
    [3] LI J, YUAN T C, ZHOU C L, et al. Facile Li-Al layered double hydroxide films on Al alloy for enhanced hydrophobicity, anti-biofouling and anti-corrosion performance[J]. Journal of Materials Science & Technology, 2021, 79: 230-242.
    [4] FOORGINEZHAD S, ZERAFAT M M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties[J]. Applied Surface Science, 2019, 464: 458-471. doi: 10.1016/j.apsusc.2018.09.058
    [5] ZHANG X X, WANG Y Y, GU L, et al. Superhydrophobic surface modified by sol-gel silica nanoparticle coating[J]. Materials Science Forum, 2019, 4799: 155-160.
    [6] QIU C, LI M, CHEN S X. Anti-icing characteristics of PTFE super hydrophobic coating on titanium alloy surface[J]. Journal of Alloys and Compounds, 2021, 860: 157907. doi: 10.1016/j.jallcom.2020.157907
    [7] XI Y L, QI Y L, MAO Z P, et al. Surface hydrophobic modification of TiO2 and its application to preparing PMMA/TiO2 composite cool material with improved hydrophobicity and anti-icing property[J]. Construction and Building Materials, 2021, 266: 120916. doi: 10.1016/j.conbuildmat.2020.120916
    [8] PARSAIE A, TAMSILIAN Y, PORDANJANI M R, et al. Novel approach for rapid oil/water separation through superhydrophobic/superoleophilic zinc stearate coated polyurethane sponges[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126395. doi: 10.1016/j.colsurfa.2021.126395
    [9] DENG W S, LONG M Y, MIAO X R, et al. Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption[J]. Surface & Coatings Technology, 2017, 325: 14-21.
    [10] ZHANG X, ZHAO J, MO J L, et al. Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 205-212.
    [11] BAI X, YANG Q, FANG Y, et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 2020, 383: 123143. doi: 10.1016/j.cej.2019.123143
    [12] WU W B, LIANG R X, LU L S, et al. Preparation of superhydrophobic laser-induced graphene using taro leaf structure as templates[J]. Surface & Coatings Technology, 2020, 393: 125744.
    [13] ZHU Y, HE Y, ZHANG J F, et al. Preparation of large-scale, durable, superhydrophobic PTFE films using rough glass templates[J]. Surface and Interface Analysis, 2017, 49(13): 1422-1430. doi: 10.1002/sia.6273
    [14] VANITHAKUMARI S C, ATHULYA V, GEORGE R P, et al. Fabrication of superhydrophobic and self cleaning PVA‐silica fiber coating on 304L SS surfaces by electrospinning[J]. Journal of Applied Polymer Science, 2021, 138: e50118. doi: 10.1002/app.50118
    [15] ZHANG J Y, LIU S X, HUANG Y, et al. Durable fluorinated-SiO2/epoxy superhydrophobic coatings on polycarbonate with strong interfacial adhesion enhanced by solvent-induced crystallization[J]. Progress in Organic Coatings, 2021, 150: 106002. doi: 10.1016/j.porgcoat.2020.106002
    [16] ZHANG B B, XU W C, ZHU Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corrosion Science, 2019, 158: 108083. doi: 10.1016/j.corsci.2019.06.031
    [17] EL FOUHAILI B, IBRAHIM A, DIETLIN C, et al. Single-step formation of superhydrophobic surfaces using photobase-catalyzed sol-gel process[J]. Progress in Organic Coatings, 2019, 137: 105293. doi: 10.1016/j.porgcoat.2019.105293
    [18] LI R, GU Y Z, WANG Y D, et al. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite[J]. Materials Research Express, 2017, 4(3): 035035. doi: 10.1088/2053-1591/aa6651
    [19] 朱鑫睿, 高永盛, 张衍, 等. 模板法制备耐久性疏水环氧涂层[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 272-277.
    [20] MARCZAK J, KARGOL M, PSARSKI M, et al. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties[J]. Applied Surface Science, 2016, 380: 91-100. doi: 10.1016/j.apsusc.2016.02.071
    [21] 郭晓娟, 刘宁, 梁笑丛, 等. 溶剂挥发速率对涂层表观的影响[J]. 信息记录材料, 2008(05): 21-23. doi: 10.3969/j.issn.1009-5624.2008.05.004
    [22] 刘登良, 涂料工艺[M]. 第4版. 化学工业出版社, 2010.
    [23] 曹合适, 张斌珍, 赵龙. PDMS仿生疏水表面的制备[J]. 微纳电子技术, 2015, 52(5): 329-333.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回