高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

5A分子筛催化三辛胺盐酸盐热解过程工艺研究

唐梦亚 刘程琳 杨颖 陈杭 宋兴福 李平

唐梦亚, 刘程琳, 杨颖, 陈杭, 宋兴福, 李平. 5A分子筛催化三辛胺盐酸盐热解过程工艺研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210530002
引用本文: 唐梦亚, 刘程琳, 杨颖, 陈杭, 宋兴福, 李平. 5A分子筛催化三辛胺盐酸盐热解过程工艺研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210530002
TANG Mengya, LIU Chenglin, YANG Ying, CHEN Hang, SONG Xingfu, LI Ping. Thermal Dissociation of Trioctylamine Hydrochloride Catalyzed by 5A Molecular Sieve[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210530002
Citation: TANG Mengya, LIU Chenglin, YANG Ying, CHEN Hang, SONG Xingfu, LI Ping. Thermal Dissociation of Trioctylamine Hydrochloride Catalyzed by 5A Molecular Sieve[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210530002

5A分子筛催化三辛胺盐酸盐热解过程工艺研究

doi: 10.14135/j.cnki.1006-3080.20210530002
基金项目: 国家重点研发计划:CO2矿化含氯水溶钙镁废渣无害化处理回收氯关键技术(2018YFB0605703)
详细信息
    作者简介:

    唐梦亚(1995-),女,河北省石家庄人,硕士生,研究方向为资源循环利用。E-mail:1603554221@qq.com

    通讯作者:

    宋兴福,E-mail:xfsong@ecust.edu.cn

    李 平,E-mail:liping_2007@ecust.edu.cn

  • 中图分类号: TQ11

Thermal Dissociation of Trioctylamine Hydrochloride Catalyzed by 5A Molecular Sieve

  • 摘要: 制碱含钙废液与CO2反应-萃取-结晶耦合工艺低成本运行的关键在于有机胺有效再生。以5A分子筛为有机胺盐酸盐热解催化剂,考察有机胺盐酸盐热解过程的影响参数并对其进行优化。结果表明:提高热解温度、载气流量、增大稀释剂和催化剂用量,热解反应速率加快,转化率提高。综合考虑转化率和能耗,选择的优化工艺参数为:反应温度180 ℃,载气流量300 mL/min,转速150 r/min,三辛胺盐酸盐与十氢萘和5A分子筛的质量比分别为1∶4和10∶1。在此最优工艺下,反应4 h时的转化率达95%、8 h转化率为99%。5次循环实验的结果表明:5A分子筛具有良好的催化活性。

     

  • 图  1  三辛胺盐酸盐热解装置示意图

    Figure  1.  Schematic diagram of TOAHCl pyrolysis

    图  2  不同温度下5A分子筛催化三辛胺盐酸盐热解曲线

    Figure  2.  Thermal dissociation curves of TOAHCl catalyzed by 5A molecular sieve at different temperatures

    图  3  三辛胺盐酸盐热解反应一级动力学拟合

    Figure  3.  First-order fitting plot of TOAHCl pyrosis

    图  4  三辛胺盐酸盐热解活化能拟合

    Figure  4.  Fitting plot of activation energy of TOAHCl pyrosis

    图  5  不同反应温度下5A分子筛催化三辛胺盐酸盐热解能耗计算

    Figure  5.  Energy consumption of TOAHCl pyrolysis catalyzed by 5A molecular sieve at different reaction temperatures

    图  6  载气流量对5A分子筛催化三辛胺盐酸盐热解过程的影响

    Figure  6.  Effect of carrier gas flow on thermal dissociation of TOAHCl catalyzed by 5A molecular sieve

    图  7  转速对5A分子筛催化三辛胺盐酸盐热解的影响

    Figure  7.  Effect of rotate speed on thermal dissociation of TOAHCl catalyzed by 5A molecular sieve

    图  8  十氢萘用量对5A分子筛催化三辛胺盐酸盐热解效果的影响

    Figure  8.  Effect of decalin content on thermal dissociation of TOAHCl catalyzed by 5A molecular sieve

    图  9  不同十氢萘用量下5A分子筛催化三辛胺盐酸盐热解能耗

    Figure  9.  Energy consumption of TOAHCl pyrolysis catalyzed by 5A molecular sieve at different decalin content

    图  10  5A分子筛用量对三辛胺盐酸盐热解反应的影响

    Figure  10.  Effect of 5A molecular sieve dosage on thermal dissociation of TOAHCl

    图  11  5A分子筛热解循环实验效果

    Figure  11.  Effect of 5A molecular sieve pyrolysis cycle experiment

    表  1  不同温度下达到不同转化率所用反应时间

    Table  1.   Reaction time for different conversion at different temperatures

    T/℃t/h
    90%95%98%99%
    1802.83.64.75.6
    1705.97.710.011.8
    16013.517.623.027.0
    15018.824.532.037.6
    下载: 导出CSV

    表  2  不同十氢萘用量达到不同转化率所用反应时间

    Table  2.   Reaction time for different conversion rate at different decalin content

    mTOAHCI∶${ {m} }_{{{\rm{C}}_{10}{\rm{H}}_{18}}}$t/h
    90%95%98%99%
    1∶52.63.44.55.2
    1∶42.93.85.05.9
    1∶35.77.49.711.4
    1∶26.28.110.512.4
    1∶118.524.031.336.9
    下载: 导出CSV
  • [1] XU Y, ZHU L, CHANG D, et al. International chains of CO2 capture, utilization and storage (CCUS) in a carbon-neutral world[J]. Resources, Conservation & Recycling, 2021, 167: 105433. doi: 10.1016/j.resconrec.2021.105433
    [2] SINGH U, COLOSI L M. The case for estimating carbon return on investment (CROI) for CCUS platforms[J]. Applied Energy, 2021, 285: 1116394. doi: 10.1016/J.APENERGY.2020.116394
    [3] JIANG K, ASHWORTH P. The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110521. doi: 10.1016/J.RSER.2020.110521
    [4] ZHOU Z Y, LIANG F, QIN W, et al. Coupled reaction and solvent extraction process to form Li2CO3: Mechanism and product characterization[J]. AIChE Journal, 2014, 60(1): 282-288. doi: 10.1002/aic.14243
    [5] 许振良, 黄颂安, 施亚钧. 有机胺制碱碳化过程的热力学[J]. 华东化工学院学报, 1988, 14(5): 605-613.
    [6] 黄钦佩, 靳凤民, 康仕芳. 有机胺萃取法制备碳酸钾[J]. 化学工业与工程, 2007(4): 304-308. doi: 10.3969/j.issn.1004-9533.2007.04.006
    [7] WANG W L, LIU X, WANG P, et al. Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 8028-8033.
    [8] CHEN G L, SONG X F, DONG C H, et al. Mineralizing CO2 as MgCO3 center dot 3H2O using abandoned MgCl2 based on a coupled reaction-extraction-alcohol precipitation process[J]. Energy & Fuels, 2016, 30(9): 7551-7559.
    [9] LI Y Z, SONG X F, SUN S Y, et al. Extraction equilibrium of hydrochloric acid at low concentrations between water and N235 in isoamyl alcohol solution: Experiments and simulation[J]. Journal of Chemical and Engineering Data, 2015, 60(10): 3000-3008. doi: 10.1021/acs.jced.5b00409
    [10] LI Y Z, SONG X F, CHEN G L, et al. Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction-crystallization process[J]. Chemical Engineering Journal, 2015, 278: 55-61. doi: 10.1016/j.cej.2014.12.058
    [11] DAI C Y, CHEN H, SONG X F, et al. Coupled reaction and solvent extraction process to utilize distiller waste using N235-isoamylol system[J/OL]. Energy Sources: Part A. Recovery Utilization and Environmental Effects, 2020, http://doi.org/10.1080/15567036.2020.1781299.
    [12] CHEN M, LI J, JIN Y, et al. Efficient solvent extraction of phosphoric acid with dibutyl sulfoxide[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(2): 467-475.
    [13] 张少杰, 唐盛伟, 王杨, 等. 盐酸法磷酸萃取相的洗涤和磷酸反萃取过程初探[J]. 无机盐工业, 2021, 5318, 36-43
    [14] LIU X, WANG W L, WANG M, et al. Experimental study of CO2 mineralization in Ca2+-rich aqueous solutions using tributylamine as an enhancing medium[J]. Energy & Fuels, 2014, 28(3): 2047-2053.
    [15] 叶龙泼, 李爽, 岳海荣, 等. 富钙溶液中萃取与反应耦合强化CO2矿化过程[J]. 化工学报, 2015, 66(9): 3511-3517.
    [16] CHEMARIN F, MOUSSA M, ALLAIS F, et al. Recovery of 3-hydroxypropionic acid from organic phases after reactive extraction with amines in an alcohol-type solvent[J]. Separation and Purification Technology, 2019, 219: 260-267. doi: 10.1016/j.seppur.2019.02.026
    [17] DONG C H, SONG X F, MEIJER E J, et al. Mechanism studies on thermal dissociation of tri-n-octylamine hydrochloride with FTIR, TG, DSC and quantum chemical methods[J]. Journal of Chemical Sciences, 2017, 129(9): 1431-1440. doi: 10.1007/s12039-017-1357-4
    [18] DONG C H, SONG X F, ZHANG J, et al. Insight into thermal dissociation of tri-n-octylamine hydrochloride: The key to realizing CO2 mineralization with waste calcium/magnesium chloride liquids[J]. Energy Science & Engineering, 2018, 6(5): 437-447.
    [19] DONG C H, SONG X F, ZHANG J, et al. Thermodynamics and kinetics analysis of thermal dissociation of tri-n-octylamine hydrochloride in open system: A DFT and TGA study[J]. Thermochimica Acta, 2018, 670: 35-43. doi: 10.1016/j.tca.2018.05.017
    [20] GIBSON E K. Amine Hydrochloride salts: A problem in polyurethane synthesis[D]. [s.l.]: University of Glasgow, 2007.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  42
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 网络出版日期:  2021-09-18

目录

    /

    返回文章
    返回