高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

煤化工高盐废水分盐结晶残液中锌离子去除探索

张郑珂 陈杭 宋兴福

张郑珂, 陈杭, 宋兴福. 煤化工高盐废水分盐结晶残液中锌离子去除探索[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210523001
引用本文: 张郑珂, 陈杭, 宋兴福. 煤化工高盐废水分盐结晶残液中锌离子去除探索[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210523001
ZHANG Zhengke, CHEN Hang, SONG Xingfu. Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210523001
Citation: ZHANG Zhengke, CHEN Hang, SONG Xingfu. Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210523001

煤化工高盐废水分盐结晶残液中锌离子去除探索

doi: 10.14135/j.cnki.1006-3080.20210523001
详细信息
    作者简介:

    张郑珂(1996—),女,河南南阳人,硕士生,研究方向为废水处理。E-mail:zzkecust@163.com

    通讯作者:

    宋兴福,E-mail: xfsong@ecust.edu.cn

  • 中图分类号: X703.1

Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry Exploration on Removal of Zinc Ion in Salt Separation Crystallization Residue of Coal Chemical Industry

  • 摘要: 煤化工高盐废水零排放过程中会产生少量浓缩残液,盐含量高达20% ~ 30%,含有一定量的锌离子为代表的重金属离子,属于危废,处理成本高。本研究开展高盐体系锌离子赋存状态模拟计算,得到Zn的各种形式占比随pH值、温度、NaCl盐浓度的变化趋势,并开展了以Na2S为沉淀剂对实际高盐有机废水体系深度脱除探索,优化了搅拌速度、初始pH值、硫化钠投加量等工艺条件,为煤化工高盐废水中锌离子的脱除提供理论指导与技术支持。

     

  • 图  1  锌在不同pH下的离子赋存状态分布

    Figure  1.  Distribution of ion occurrence state of zinc at different pH

    图  2  温度对锌赋存状态的影响

    Figure  2.  The influence of temperature on the occurrence state of zinc

    图  3  实验高盐有机废水气质联用色谱图

    Figure  3.  GC-MS spectra of experimental high-salt organic wastewater

    图  4  搅拌速度对锌去除效果影响

    Figure  4.  The influence of stirring speed on the removal of zinc

    图  5  pH值对锌去除效果的影响

    Figure  5.  The influence of pH on zinc efficiency

    图  6  硫化钠添加量对锌去除效果的影响

    Figure  6.  The influence of sodium sulfide dosage on zinc efficiency

    图  7  反应后溶液中剩余硫含量

    Figure  7.  The remaining sulfur content in the solution after the reaction

    表  1  锌溶液体系的沉淀物SI值(wNaCl=0)

    Table  1.   The SI value of the precipitate in the zinc solution system(wNaCl=0)

    MineralSI value
    pH=5pH=6pH=7pH=8pH=9
    Bianchite−3.254−3.254−3.255−3.283−3.935
    Goslarite−3.008−3.008−3.009−3.037−3.689
    Zincite−3.725−1.7250.2732.2313.438
    Zincosite−8.946−8.946−8.948−8.976−9.628
    Zn(OH)2 (am)−4.969−2.969−0.9720.9872.194
    Zn(OH)2 (beta)−4.249−2.249−0.2521.7072.914
    Zn(OH)2 (delta)−4.339−2.339−0.3421.6172.824
    Zn(OH)2 (epsilon)−4.029−2.029−0.0321.9273.134
    Zn(OH)2 (gamma)−4.229−2.229−0.2321.7272.934
    Zn2(OH)2SO4 (s)−5.012−3.012−1.0160.9141.469
    Zn3O(SO4)2 (s)−21.442−19.442−17.447−15.545−15.642
    Zn4(OH)6SO4 (s)−10.902−4.9031.0896.9359.904
    ZnSO4∶1H2O (s)−4.379−4.379−4.381−4.409−5.061
    下载: 导出CSV

    表  2  锌溶液体系的沉淀物SI值(wNaCl=25%)

    Table  2.   The SI value of the precipitate in the zinc solution system(wNaCl=25%)

    MineralSI value
    pH=5pH=6pH=7pH=8pH=9
    Bianchite−9.533−9.533−9.533−9.533−9.535
    Goslarite−9.615−9.615−9.615−9.615−9.617
    Halite−0.551−0.551−0.551−0.551−0.551
    Mirabilite−5.101−5.101−5.101−5.101−5.101
    Thenardite−3.258−3.257−3.257−3.257−3.257
    Zincite−6.952−4.952−2.952−0.9521.046
    Zincosite−13.26−13.26−13.26−13.26−13.263
    Zn(OH)2 (am)−8.524−6.524−4.524−2.524−0.526
    Zn(OH)2 (beta)−7.804−5.804−3.804−1.8040.194
    Zn(OH)2 (delta)−7.894−5.894−3.894−1.8940.104
    Zn(OH)2 (epsilon)−7.584−5.584−3.584−1.5840.414
    Zn(OH)2 (gamma)−7.784−5.784−3.784−1.7840.214
    Zn2(OH)2SO4 (s)−12.881−10.881−8.881−6.881−4.885
    Zn2(OH)3Cl (s)−11.465−8.465−5.465−2.4650.531
    Zn3O(SO4)2 (s)−33.297−31.297−29.297−27.297−25.304
    Zn4(OH)6SO4 (s)−25.881−19.881−13.881−7.882−1.890
    Zn5(OH)8Cl2 (s)−27.098−19.098−11.098−3.0984.892
    ZnCl2 (s)−11.447−11.447−11.447−11.447−11.449
    ZnSO4:1H2O (s)−9.021−9.021−9.021−9.021−9.023
    下载: 导出CSV

    表  3  实际废水样品水质分析

    Table  3.   Water quality analysis of experimental water

    ProjectResult
    pH value6.40
    COD(mg/L)887.10
    TOC(mg/L)248.00
    NaCl(mg/L)1.96×105
    Electrical conductivity(ms/cm)217.98
    Ammonia nitrogen(mg/L)1.15
    Calcium hard(mg/L)0.10
    下载: 导出CSV

    表  4  废水中有机物成分分析

    Table  4.   Type and content of organic matter in water sample

    NumberResidence timeOrganic matterTotal/%
    18.071,3,5, 7-tetraoxacycloctane2.21
    211.565-acetoxy-6 (1, 2-epoxypropyl) -5, 6-dihydropyrane-2-one1.87
    312.09(E)-4, 4-dimethyl-2-pentene0.75
    412.18Ethyl 2-methyl-2-formyl-4-pentenoate0.37
    512.44(s) -1-nitroso-2-piperidinic acid5.58
    612.829-oxabicyclic [3.3.1] none-2-ol3.26
    713.32Octadhydro-2,3' -difuran5.66
    813.764-methyl-3-ethyl-2-pentene0.89
    914.152-ethyl-1-dodecene69.29
    Note: This percentage is only the peak area percentage, and cannot be used as a percentage of content. It is for reference only.
    下载: 导出CSV
  • [1] YE Y, HUA J. Dilemma of Zero Wastewater Discharge in China's Coal Chemical Industry and Its Way Out[J]. Coal Chemical Industry, 2012, 40: 26-29.
    [2] 金艳, 张永红, 宋兴福, 等. 一株降解页岩气采出水耐盐菌的分离鉴定与特性[J]. 华东理工大学学报(自然科学版), 2020, 46(06): 722-729.
    [3] BIAN C, CHEN H, SONG X F, et al. Metastable zone width and the primary nucleation kinetics for cooling crystallization of NaNO3 from NaCl-NaNO3-H2O system[J]. Journal of Crystal Growth, 2019, 518: 5-13.
    [4] WU X Y, CHEN H, SONG X F, et al. Experimental and Theoretical Analysis of By-product Formation Process in EAOP for High Salinity Wastewater Treatment[J]. Chemical Engineering Transactions, 2019, 74: 1279-1284.
    [5] BIAN C, CHEN H, SONG X F, et al. Effects of organic pollutants on the fractional crystallization of NaNO3 from high-saline wastewater[J]. Journal of Crystal Growth. 2020, 540: 125656.
    [6] SIMóN D, GASS S, PALET C, et al. Disposal of wooden wastes used as heavy metal adsorbents as components of building bricks[J]. Journal of Building Engineering, 2021, 40: 102371.
    [7] HUANG J, SHI L, ZENG G, et al. Removal of Cd(Ⅱ) by micellar enhanced ultrafiltration: Role of SDS behaviors on membrane with low concentration[J]. Journal of Cleaner Production, 2019, 209: 53-61.
    [8] HEIDMANN I, CALMANO W. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
    [9] LEE I E, KUAN Y C, CHEN J M, Equilibrium and kinetics of heavy metal ion exchange[J]. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(1): 71-84.
    [10] CHEN Q Y, LUO Z, HILLS C, et al. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide[J]. Water Research, 2009, 43(10): 2605-2614.
    [11] CHEN Q, YAO Y, LI X, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 2018, 26: 289-300.
    [12] ALVAREZ M T, CRESPO C, MATTIASSON B. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids[J]. Chemosphere, 2007, 66(9): 1677-1683.
    [13] TYAJI S, Malik W, ANNACHHATRE A P. Heavy metal precipitation from sulfide produced from anaerobic sulfidogenic reactor[J]. Materials Today-Proceedings, 2020, 32: 936-942.
    [14] ESPOSITO G, Veeken A H M, WEIJMA J, et al. Use of biogenic sulfide for ZnS precipitation[J]. Separation and Purification Technology, 2006, 51(1): 31-39.
    [15] Veeken A H M, AKOTO L, POL L W H, et al. Control of the sulfide (S2−) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor[J]. Water Research, 2003, 37(15): 3709-3717.
    [16] NUNEZ-GOMEZ D, RODRIGUES C, LAPOLLI F R, et al. Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102787.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  23
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 网络出版日期:  2021-10-19

目录

    /

    返回文章
    返回