高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氧化石墨烯氧化状态/横向尺寸对肝脏细胞死亡机制和炎症反应的影响

陈曦 刘佳尚 洪华

陈曦, 刘佳尚, 洪华. 氧化石墨烯氧化状态/横向尺寸对肝脏细胞死亡机制和炎症反应的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210519001
引用本文: 陈曦, 刘佳尚, 洪华. 氧化石墨烯氧化状态/横向尺寸对肝脏细胞死亡机制和炎症反应的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210519001
CHEN Xi, LIU Jiashang, HONG Hua. Oxidative State and Lateral Size of Graphene Oxide Determine Differential Cell Death Mechanisms and Pro-Inflammatory Responses in the Liver[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210519001
Citation: CHEN Xi, LIU Jiashang, HONG Hua. Oxidative State and Lateral Size of Graphene Oxide Determine Differential Cell Death Mechanisms and Pro-Inflammatory Responses in the Liver[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210519001

氧化石墨烯氧化状态/横向尺寸对肝脏细胞死亡机制和炎症反应的影响

doi: 10.14135/j.cnki.1006-3080.20210519001
详细信息
    作者简介:

    陈曦(1986-),博士,副教授,研究方向为材料生物学。E-mail:chenxi@ecust.edu.cn

  • 中图分类号: Q291

Oxidative State and Lateral Size of Graphene Oxide Determine Differential Cell Death Mechanisms and Pro-Inflammatory Responses in the Liver

  • 摘要: 氧化石墨烯(GOs)在药物传递、生物传感和生物成像等方面表现出极佳的性能,但在肝脏等器官的生物相容性方面仍存在问题。分别合成了大(约510 nm)、小(约110 nm)两种尺寸的原始氧化态氧化石墨烯(pGO,根据尺寸不同分别命名为pGO-L和pGO-S)和还原态氧化石墨烯(rGO,根据尺寸不同分别命名为rGO-L和rGO-S);探讨了GOs对3种肝细胞(枯氏细胞、肝窦内皮细胞、肝细胞)的生物学影响。结果表明,pGO能诱导枯氏细胞膜损伤并引起其坏死(pGO-L>pGO-S),而对肝窦内皮细胞和肝细胞毒性较小;rGO可诱导枯氏细胞和肝窦内皮细胞凋亡(rGO-L>rGO-S),但对肝细胞影响微乎其微。在溶酶体和NLRP3炎症小体水平上进一步研究GOs的胞内效应,结果表明,rGO造成枯氏细胞和肝窦内皮细胞的溶酶体损伤并诱导了白细胞介素-1β(IL-1β)的产生,但rGO在肝细胞中与pGO组实验中均未见类似效应。研究表明GOs的表面氧化状态和横向尺寸在肝脏细胞中引发了不同的细胞死亡机制和炎症反应。

     

  • 图  1  GOs材料理化性质的表征

    Figure  1.  Physicochemical characterizations of GOs materials

    (a) Determination of the flake sizes of pGO and rGO nanosheets by AFM; (b) XPS spectra of surface functional groups on pGO and rGO nanosheets; (c) Quantification of oxygen-to-carbon mass ratio (m(O)∶m(C)) and the massfractions of oxidized groups, respectively; (d) Raman spectra with the wavelength region of 1000—2000 cm−1 and ID/IG ratio of pGO and rGO samples; (e) Contact angle of pGO and rGO nanosheets. Data represent the mean ± standard error from triplicates

    图  2  GOs在 Kup5、 SK-HEP-1 和 Hepa 1-6 细胞中的毒性实验

    Figure  2.  Cytotoxicity of GOs in Kup5, SK-HEP-1 and Hepa 1-6 cells

    (a) Assessment of cell death in three cell types by the CellToxTM Green assay; (b) Assessment of cell viability in three cell types by the ATP liteTM assay. ZnO (D=(22.6 ± 5.1) nm) nanoparticles were used as a positive control for cell death. * P<0.05 compared to cell control based on student's T Test. & stands for P<0.05 compared pGO-S with pGO-L based on student’s T Test. # stands for P<0.05 compared rGO-S with rGO-L based on student’s T Test; (c) Heat map summary of GO materials induced cytotoxicity in three cell types based on the proportion of cell death in three cell types obtained from Cell Tox assay, respectively

    图  3  GOs诱导3种肝脏细胞死亡的机制

    Figure  3.  Mechanisms of cell death for three types of liver cells inducedby GOs

    (a) three types of liver cells after treatment with pGO and rGO nanosheets for 16 h, respectively. The assay is Annexin V/PI staining evaluated by flow cytometry. (b) Caspase-3/Caspase-7 activities induced by pGO and rGO nanosheets in Kup5 and SK-HEP-1 cells, respectively. The concentration for both pGO and rGO was 50 μg/mL and the incubation time was 16 h. * P<0.05 compared to cell control based on student's T Test. (c) Differential interference contrast (DIC) images of cells (Kup5, SK-HEP-1 and Hepa 1-6) after treatment with pGO or rGO for 24 h. Materials’ concentrations are 50 μg/mL, respectively. (d) Confocal images of pGO-L induced cytoskeleton disruption in Kup5 after 12 h incubation, respectively. Cell cytoskeleton and membranes were stained with AF633 conjugated phalloidin and WGA AF488 conjugated wheat germ agglutinin, respectively. The images are shown at single Z-plane

    图  4  GOs与肝脏细胞的细胞结合实验

    Figure  4.  Cellular association of GOs with liver cells

    Cellular association of pGO and rGO nanosheets in (a) Kup5, (b) SK-HEP-1 and (c) Hepa 1-6 cell lines by fluorescence confocal microscopy and flow cytometry. Cells were treated with 50 μg/mL pGO and rGO nanosheets for 16 h, respectively. Cell nuclei and membranes were stained with Hoechst 33342 and Alexa Fluor-594 conjugated wheat germ agglutinin, respectively. The images are shown at single Z-plane.Flow cytometry side scattering (SSC) data (bottom right figures) show the percentage of cellular association of pGO and rGO (50 μg/ mL) after 16 h incubation at 37 °C. (d) TEM images of cellular interaction of pGO-L and rGO-L nanosheets in Kup5 cells after 6 h incubation. Right two images of the magnification of the frame area in the middle two image, respectively. (e) Cellular association of GOs (50 μg/mL) by SK-HEP-1 and Hepa 1-6 with (red bars) or without (blue bars) BLT-1 treatment. Cells were pre-treated with BLT-1 for 8 h prior to pGO/rGO exposure at a working concentration of 100 nmol/L. Cellular uptake were quantified by side scatter of flow cytometry

    图  5  GOs诱导肝脏细胞脂质过氧化实验

    Figure  5.  Lipid peroxidation test of liver cells induced by GOs

    Confocal imaging (up) and percentage (down) of GOs induced lipid peroxidation in (a) Kup 5, (b) SK-HEP-1 and (c) Hepa 1-6 cells, respectively. To assess lipid peroxidation, cells were exposed to 25 μg/mL pGO or rGO nanosheets (for 12 h) or 20 μmol/L cumene hydroperoxide (CH) as a positive control (for 1.5 h), and then stained with the Image-iT lipid peroxidation reagent and Hoechst 33342 (nuclei staining), respectively. The lipid peroxidation was determined by the reduction and oxidation of the Image-iT sensor at excitation/emission wavelengths of 581 nm/591 nm (Texas Red, pristine sensor) and 488 nm/510 nm (FITC, oxidized sensor). Quantification of cells with lipid peroxidation was done using FITC channel of flow cytometry, respectively. Data represent the mean ± standard error from two independent experiments, and at least 10000 cells were analyzed in each experiment. * stands for P<0.05 compared to cell control based on student's T Test

    图  6  Kup5细胞在pGO和rGO(50 μg/mL)中处理6 h后溶酶体损伤及组织蛋白酶B释放

    Figure  6.  Lysosomal damage and cathepsin B release in Kup5 cells after pGO and rGO (50 μg/mL) treatment for 6 h, respectively

    Cathepsin B was stained with Magic Red at 26 nmol/L for 2 h; Monosodium urate crystals (MSU) was used a positive control for lysosome damage

    图  7  Kup5,SK-HEP-1 和 Hepa 1-6三种肝脏细胞暴露于pGO和rGO(50 μg/mL)24 h 后 IL-1β的释放

    Figure  7.  IL-1β production induced by pGO and rGO (50 μg/mL) in Kup5, SK-HEP-1, and Hepa 1-6 after 24 h incubation, respectively

    Data represent the mean ± standard error from three independent experiments; * P<0.05 compared to cell control based on  student's  T  test;  # P<0.05  based  on  student ’s T  test

    图  8  GOs 诱导Kup5,SK-HEP-1 和 Hepa 1-6 三种肝脏细胞死亡和促炎症反应机理示意图

    Figure  8.  Schematic illustration of GO materials induced differential cell death mechanisms and pro-inflammatory responses  in Kup5,  SK-HEP-1, and Hepa 1-6 cells

    表  1  pGO和rGO纳米片在细胞培养基中的水合粒经和ζ电位

    Table  1.   Hydrodynamic size and ζ potential of pGO and rGO nanosheets in different cell culture media

    MediumHydrodynamic size/nmZeta potential/mV
    pGO-SpGO-LrGO-SrGO-LpGO-SpGO-LrGO-SrGO-L
    Kup5258.9 ± 6.6448.4 ± 19.2383.7 ± 52.5685.1 ± 37.0−13.8 ± 1.6−11.9 ± 2.6−12.9 ± 2.5−12.7 ± 1.0
    SK-HEP-1256.4 ± 7.2556.8 ± 6.3352.4 ± 7.3557.9 ± 16.0−14.7 ± 2.3−14.4 ± 1.2−14.9 ± 2.0−14.7 ± 3.6
    Hepa 1-6278.5 ± 5.0448.6 ± 8.1370.0 ± 12.3765.6 ± 20.5−14.4 ± 2.6−14.6 ± 4.2−14.3 ± 2.9−13.7 ± 1.6
    下载: 导出CSV

    表  2  pGO和rGO在酶体模拟液(pH 4.5)6 h后的水合粒径

    Table  2.   Hydrodynamic sizes of pGO and rGO after suspending in phagolysosomal simulant fluid (pH 4.5) for 6 h, respectively

    GOsHydrodynamic size/nmPDI
    pGO-S829.8 ± 80.90.378
    pGO-L1479.8 ± 25.90.375
    rGO-S12215.2 ± 896.40.472
    rGO-L16214.4 ± 8099.8r0.476
    Original sizes of GOs are shown in brackets, respectively
    下载: 导出CSV
  • [1] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A Roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458
    [2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. doi: 10.1038/nmat1849
    [3] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. doi: 10.1038/nnano.2008.215
    [4] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. doi: 10.1039/B917103G
    [5] DREYER D R, TODD A D, BIELAWSKI C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15): 5288-5301. doi: 10.1039/C4CS00060A
    [6] CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Acc Chem Res, 2013, 46(10): 2211-2224. doi: 10.1021/ar300159f
    [7] YANG Y, ASIRI A M, TANG Z, et al. Graphene based materials for biomedical applications[J]. Materials Today, 2013, 16(10): 365-373. doi: 10.1016/j.mattod.2013.09.004
    [8] SUN X, ZHUANG L, WELSHER K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 2008, 1(3): 203-212. doi: 10.1007/s12274-008-8021-8
    [9] NEL A E, MDLER L, VELEGOL D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7): 543-557. doi: 10.1038/nmat2442
    [10] CHEN X, YAN Y, MUELLNER M, et al. Shape-dependent activation of cytokine secretion by polymer capsules in human monocyte-derived macrophages[J]. Biomacromolecules, 2016, 17(3): 1205-1212. doi: 10.1021/acs.biomac.6b00027
    [11] WANG X, DUCH M C, MANSUKHANI N, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials[J]. Acs Nano, 2015, 9(3): 3032-3043. doi: 10.1021/nn507243w
    [12] WEN K P, CHEN Y C, CHUANG C H, et al. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice[J]. Journal of Applied Toxicology, 2015, 35(10): 1211-1218. doi: 10.1002/jat.3187
    [13] YANG K, FENG L, HAO H, et al. Preparation and functionalization of graphene nanocomposites for biomedical applications[J]. Nature Protocols, 2013, 8(12): 2392-2403. doi: 10.1038/nprot.2013.146
    [14] HUSSAIN S M, HESS K L, GEARHART J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983. doi: 10.1016/j.tiv.2005.06.034
    [15] WARDLE E N. Kupffer cells and their function[J]. Liver International, 1987, 7(2): 63-75.
    [16] BILZER M, ROGGEL F, GERBES A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186. doi: 10.1111/j.1478-3231.2006.01342.x
    [17] ROBERTS R A, GANEY P E, JU C, et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis[J]. Toxicol Science, 2007, 96(1): 2-15.
    [18] FEDER L S, TO DA RO J A, LASKIN D L. Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages[J]. Journal of Leukocyte Biology, 1993, 53(2): 126-32. doi: 10.1002/jlb.53.2.126
    [19] NEGASH A A, RAMOS H J, CROCHET N, et al. IL-1β Production through the NLRP3 Inflammasome by Hepatic Macrophages Links Hepatitis C Virus Infection with Liver Inflammation and Disease[J]. Plos Pathogens, 2013, 9(4): e1003330. doi: 10.1371/journal.ppat.1003330.
    [20] MILOSEVIC N, SCHAWALDER H, MAIER P. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes[J]. European Journal of Pharmacology, 1999, 368(1): 75-87. doi: 10.1016/S0014-2999(98)00988-1
    [21] AKRAM M A I M, NAIMUDDIN K, JASMINDER S, et al. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery[J]. Current Drug Discovery Technologies, 2010, 7(3): 188-198.
    [22] MASLAK E, GREGORIUS A, CHLOPICKI S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD: NO-based therapy targeted to the liver[J]. Pharmacological Reports, 2015, 67(4): 689-694. doi: 10.1016/j.pharep.2015.04.010
    [23] KNOLLE, UHRIG, HEGENBARTH, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules[J]. Clinical and Experimental Immunology, 1998, 114(3): 427-433.
    [24] KNOLLE P A, WOHLLEBER D. Immunological functions of liver sinusoidal endothelial cells[J]. Cellular & Molecular Immunology, 2016, 13: 347-353.
    [25] SHURIN M R, YANAMALA N, KISIN E R, et al. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma[J]. Acs Nano, 2014, 8(6): 5585-5599. doi: 10.1021/nn406454u
    [26] OU L, SONG B, LIANG H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms[J]. Particle & Fibre Toxicology, 2016, 13: 57. doi: 10.1186/s12989-016-0168-y.
    [27] GUO X, MEI N. Assessment of the toxic potential of graphene family nanomaterials[J]. Journal of Food & Drug Analysis, 2014, 22(1): 105-115.
    [28] LIU J H, YANG S T, WANG H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice[J]. Nanomedicine (London, England), 2012, 7(12): 1801-1812. doi: 10.2217/nnm.12.60
    [29] SHANG L, NIENHAUS K, NIENHAUS G U. Engineered Nanoparticles Interacting with Cells: Size Matters[J]. Journal of Nanobiotechnology, 2014, 12(1): 5. doi: 10.1186/1477-3155-12-5.
    [30] ZHANG H, PENG C, YANG J, et al. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake[J]. Acs Appl Mater Interfaces, 2013, 5(5): 1761-1767. doi: 10.1021/am303005j
    [31] MA J, LIU R, WANG X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals[J]. Acs Nano, 2015, 9(10): 10498-10515. doi: 10.1021/acsnano.5b04751
    [32] SYDLIK S A, JHUNJHUNWALA S, WEBBER M J, et al. In vivo compatibility of graphene oxide with differing oxidation states[J]. Acs Nano, 2015, 9(4): 3866-3874. doi: 10.1021/acsnano.5b01290
    [33] ZHANG W, YAN L, LI M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells[J]. Toxicology Letters, 2015, 237(2): 61-71. doi: 10.1016/j.toxlet.2015.05.021
    [34] LI R, GUINEY L M, CHANG C H, et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model[J]. Acs Nano, 2018, 12(2): 1390-1402. doi: 10.1021/acsnano.7b07737
    [35] LI R, MANSUKHANI N D, GUINEY L M, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings[J]. Acs Nano, 2016, 10: 10966-10980.
    [36] JIANG W, WANG X, OSBORNE O J, et al. Pro-inflammatory and pro-fibrogenic effects of ionic and particulate arsenide and indium-containing semiconductor materials in the murine lung[J]. Acs Nano, 2017, 12(2): 1869-1883.
    [37] KUDIN K N, OZBAS B, SCHNIEPP H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8(1): 36-41. doi: 10.1021/nl071822y
    [38] WANG X, MANSUKHANI N D, GUINEY L M, et al. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung[J]. Small, 2015, 11(38): 5079-5087. doi: 10.1002/smll.201500906
    [39] GANESAN L P, MATES J M, CHEPLOWITZ A M, et al. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells[J]. Scientific Reports, 2016, 6: 20646. doi: 10.1038/srep20646.
    [40] XIA T, ZHU Y, MU L, et al. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century[J]. National Science Review, 2016, 3(4): 416-429. doi: 10.1093/nsr/nww064
    [41] STEFANIAK A B, GUILMETTE R A, DAY G A, et al. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution[J]. Toxicology in Vitro, 2005, 19(1): 123-134. doi: 10.1016/j.tiv.2004.08.001
    [42] ZHOU J, TAN S H, NICOLAS V, et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion[J]. Cell Research, 2013, 23(4): 508-523. doi: 10.1038/cr.2013.11
    [43] PETROS R A, DESIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nature Reviews Drug Discovery, 2010, 9(8): 615-627. doi: 10.1038/nrd2591
    [44] CHAMPION J A, WALKER A, MITRAGOTRI S. Role of particle size in phagocytosis of polymeric microspheres[J]. Pharm Res, 2008, 25(8): 1815-1821. doi: 10.1007/s11095-008-9562-y
    [45] MOGHADDAM M S, HEINY M, SHASTRI V P. Enhanced cellular uptake of nanoparticles by increasing the hydrophobicity of poly(lactic acid) through copolymerization with cell-membrane-lipid components[J]. Chemical Communications, 2015, 51(78): 14605-14608. doi: 10.1039/C5CC06397C
    [46] MULLER R H, RUHL D, LUCK M, et al. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption[J]. Pharmaceutical Research, 1997, 14(1): 18-24. doi: 10.1023/A:1012043131081
    [47] SUN B, WANG X, JI Z, et al. NLRP3 Inflammasome activation induced by engineered nanomaterials[J]. Small, 2013, 9(9/10): 1595-1607. doi: 10.1002/smll.201201962
    [48] NING L, XIA T, NEL A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles[J]. Free Radic Biol Med, 2008, 44(9): 1689-1699. doi: 10.1016/j.freeradbiomed.2008.01.028
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 网络出版日期:  2021-06-29

目录

    /

    返回文章
    返回