Effect of Oxidative State and Lateral Size of Graphene Oxide on Cell Death Mechanisms and Pro-Inflammatory Responses in the Liver
-
摘要: 氧化石墨烯(GO)在药物传递、生物传感和生物成像等方面表现出极佳的性能,但在肝脏等器官的生物相容性方面仍存在问题。分别合成了大(约510 nm)、小(约110 nm)两种尺寸的原始氧化态氧化石墨烯(pGO,根据尺寸不同分别命名为pGO-L和pGO-S)和还原态氧化石墨烯(rGO,根据尺寸不同分别命名为rGO-L和rGO-S);探讨了GO对3种肝细胞(枯氏细胞、肝窦内皮细胞、肝细胞)的生物学影响。结果表明,pGO能诱导枯氏细胞膜损伤并引起其坏死(pGO-L>pGO-S),而对肝窦内皮细胞和肝细胞毒性较小;rGO可诱导枯氏细胞和肝窦内皮细胞凋亡(rGO-L>rGO-S),但对肝细胞影响微乎其微。在溶酶体和NLRP3炎症小体水平上进一步研究GO的胞内效应,结果表明,rGO造成枯氏细胞和肝窦内皮细胞的溶酶体损伤并诱导了白细胞介素-1β(IL-1β)的产生,但rGO在肝细胞中和pGO实验组中均未见类似效应。研究表明GO的表面氧化状态和横向尺寸在肝脏细胞中引发了不同的细胞死亡机制和炎症反应。Abstract: Two-dimensional (2D) graphene oxide (GO) has been widely used for biomedical applications such as drug delivery, biosensing and bioimaging. However, problems still exist with respect to their toxicity to major organs such as the liver. In this study, we systemically investigated the impact of GO on three major liver cell types: Kupffer cells, liver sinusoidal endothelial cells (LSEC), and hepatocytes. Pristine and reduced GO, nanosheets (pGO and rGO) with two sizes (about 510 nm and 110 nm) were synthesized. These materials elicited different cellular responses depending on the oxidation state as well as lateral size of GO. While pGO induced plasma membrane damage and necrosis (large nanosheets > small nanosheets) in Kupffer cells, minimal cytotoxicity was observed in LSEC and hepatocytes. In contrast, rGO induced apoptosis in Kupffer cells (large nanosheets > small nanosheets) and LSEC, with negligible effects in hepatocytes. While pGO could attach to the Kupffer cell membrane and induce lipid peroxidation and cytoskeleton disruption, rGO was mostly taken up in Kupffer cells. Moreover, while pGO and rGO were taken up in roughly similar amounts by LSEC, little was internalized for hepatocytes. Studies on the intracellular effects of the GO species at the lysosomal and inflammasomal level demonstrated that rGO damaged lysosomes and induced IL-1β production in both Kupffer and LSEC cells, while similar effects were absent in hepatocytes or with pGO. Our research reveals that the surface oxidation state and lateral size of GO determine their biological effect on tuning the fate of liver cells.
-
Key words:
- Kupffer cell /
- LSEC /
- hepatocyte /
- necrocytosis /
- apoptosis /
- NLRP3 inflammasome
-
图 2 GO在 Kup5、 SK-HEP-1 和 Hepa 1-6 细胞中的毒性实验
Figure 2. Cytotoxicity of GO in Kup5, SK-HEP-1 and Hepa 1-6 cells
* Stands for P<0.05 compared to cell control based on student's T test; & stands for P<0.05 compared pGO-S with pGO-L based on student’s T test; # stands for P<0.05 compared rGO-S with rGO-L based on student’s T test
图 4 GO与肝脏细胞的细胞结合实验
Figure 4. Cellular association of GO with liver cells
Cellular association of pGO and rGO nanosheets in (a) Kup5, (b) SK-HEP-1 and (c) Hepa 1-6 cell lines by fluorescence confocal microscopy and flow cytometry. Cells were treated with 50 μg/mL pGO and rGO nanosheets for 16 h, respectively. (d) TEM images of cellular interaction of pGO-L and rGO-L nanosheets in Kup5 cells after 6 h incubation. Two images of the magnification on the right are the frame area in the middle two images, respectively. (e) Cellular association of GO (50 μg/mL). Cells were pre-treated with BLT-1 for 8 h prior to pGO/rGO exposure at a working concentration of 100 nmol/L. Cellular uptake was quantified by side scatter of flow cytometry
表 1 GO材料的氧碳质量比和氧化基团质量分数
Table 1. Quantification of oxygen-to-carbon mass ratio and the mass fractions of oxidized groups of GO materials
GO m(O) : m(C) w(C−C)/% w(C−O)/% w(C=O )/% w(O−C=O )/% pGO-S 1.0 : (2.2 ± 0.1) 48.5 ± 2.2 44.7 ± 1.8 6.8 ± 1.1 − pGO-L 1.0 : (2.1 ± 0.1) 53.8 ± 1.1 39.7 ± 0.8 6.5 ± 0.4 − rGO-S 1.0 : (6.7 ± 0.1) 63.0 ± 2.0 16.7 ± 0.9 14.9 ± 1.2 5.4 ± 0.1 rGO-L 1.0 : (7.7 ± 0.1) 64.1 ± 0.7 15.5 ± 0.7 15.2 ± 0.7 5.1 ± 0.2 表 2 pGO和rGO纳米片在细胞培养基中的水合粒径和Zeta电位
Table 2. Hydrodynamic size and Zeta potential of pGO and rGO nanosheets in different cell culture media
Medium Hydrodynamic size/nm Zeta potential/mV pGO-S pGO-L rGO-S rGO-L pGO-S pGO-L rGO-S rGO-L Kup5 258.9 ± 6.6 448.4 ± 19.2 383.7 ± 52.5 685.1 ± 37.0 −13.8 ± 1.6 −11.9 ± 2.6 −12.9 ± 2.5 −12.7 ± 1.0 SK-HEP-1 256.4 ± 7.2 556.8 ± 6.3 352.4 ± 7.3 557.9 ± 16.0 −14.7 ± 2.3 −14.4 ± 1.2 −14.9 ± 2.0 −14.7 ± 3.6 Hepa 1-6 278.5 ± 5.0 448.6 ± 8.1 370.0 ± 12.3 765.6 ± 20.5 −14.4 ± 2.6 −14.6 ± 4.2 −14.3 ± 2.9 −13.7 ± 1.6 表 3 pGO和rGO在溶酶体模拟液(pH 4.5)中6 h后的水合粒径
Table 3. Hydrodynamic sizes of pGO and rGO after suspending in lysosomal simulant fluid (pH 4.5) for 6 h, respectively
GO Hydrodynamic size/nm PDI pGO-S 829.8 ± 80.9 0.378 pGO-L 1479.8 ± 25.9 0.375 rGO-S 12215.2 ± 896.4 0.472 rGO-L 16214.4 ± 8099.8 0.476 -
[1] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458 [2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. doi: 10.1038/nmat1849 [3] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. doi: 10.1038/nnano.2008.215 [4] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. doi: 10.1039/B917103G [5] DREYER D R, TODD A D, BIELAWSKI C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15): 5288-5301. doi: 10.1039/C4CS00060A [6] CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research, 2013, 46(10): 2211-2224. doi: 10.1021/ar300159f [7] YANG Y, ASIRI A M, TANG Z, et al. Graphene based materials for biomedical applications[J]. Materials Today, 2013, 16(10): 365-373. doi: 10.1016/j.mattod.2013.09.004 [8] SUN X, ZHUANG L, WELSHER K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 2008, 1(3): 203-212. doi: 10.1007/s12274-008-8021-8 [9] NEL A E, MDLER L, VELEGOL D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7): 543-557. doi: 10.1038/nmat2442 [10] CHEN X, YAN Y, MUELLNER M, et al. Shape-dependent activation of cytokine secretion by polymer capsules in human monocyte-derived macrophages[J]. Biomacromolecules, 2016, 17(3): 1205-1212. doi: 10.1021/acs.biomac.6b00027 [11] WANG X, DUCH M C, MANSUKHANI N, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials[J]. Acs Nano, 2015, 9(3): 3032-3043. doi: 10.1021/nn507243w [12] WEN K P, CHEN Y C, CHUANG C H, et al. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice[J]. Journal of Applied Toxicology, 2015, 35(10): 1211-1218. doi: 10.1002/jat.3187 [13] YANG K, FENG L, HAO H, et al. Preparation and functionalization of graphene nanocomposites for biomedical applications[J]. Nature Protocols, 2013, 8(12): 2392-2403. doi: 10.1038/nprot.2013.146 [14] HUSSAIN S M, HESS K L, GEARHART J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983. doi: 10.1016/j.tiv.2005.06.034 [15] WARDLE E N. Kupffer cells and their function[J]. Liver International, 1987, 7(2): 63-75. [16] BILZER M, ROGGEL F, GERBES A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186. doi: 10.1111/j.1478-3231.2006.01342.x [17] ROBERTS R A, GANEY P E, JU C, et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis[J]. Toxicol Science, 2007, 96(1): 2-15. [18] FEDER L S, TO DA RO J A, LASKIN D L. Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages[J]. Journal of Leukocyte Biology, 1993, 53(2): 126-32. doi: 10.1002/jlb.53.2.126 [19] NEGASH A A, RAMOS H J, CROCHET N, et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis c virus infection with liver inflammation and disease[J]. Plos Pathogens, 2013, 9(4): e1003330. doi: 10.1371/journal.ppat.1003330. [20] MILOSEVIC N, SCHAWALDER H, MAIER P. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes[J]. European Journal of Pharmacology, 1999, 368(1): 75-87. doi: 10.1016/S0014-2999(98)00988-1 [21] AKRAM M A I M, NAIMUDDIN K, JASMINDER S, et al. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery[J]. Current Drug Discovery Technologies, 2010, 7(3): 188-198. [22] MASLAK E, GREGORIUS A, CHLOPICKI S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD: NO-based therapy targeted to the liver[J]. Pharmacological Reports, 2015, 67(4): 689-694. doi: 10.1016/j.pharep.2015.04.010 [23] KNOLLE P A, UHRIG A, HEGENBARTH S, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules[J]. Clinical and Experimental Immunology, 1998, 114(3): 427-433. [24] KNOLLE P A, WOHLLEBER D. Immunological functions of liver sinusoidal endothelial cells[J]. Cellular & Molecular Immunology, 2016, 13: 347-353. [25] SHURIN M R, YANAMALA N, KISIN E R, et al. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma[J]. Acs Nano, 2014, 8(6): 5585-5599. doi: 10.1021/nn406454u [26] OU L, SONG B, LIANG H, et al. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms[J]. Particle & Fibre Toxicology, 2016, 13: 57. doi: 10.1186/s12989-016-0168-y. [27] GUO X, MEI N. Assessment of the toxic potential of graphene family nanomaterials[J]. Journal of Food & Drug Analysis, 2014, 22(1): 105-115. [28] LIU J H, YANG S T, WANG H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice[J]. Nanomedicine, 2012, 7(12): 1801-1812. doi: 10.2217/nnm.12.60 [29] SHANG L, NIENHAUS K, NIENHAUS G U. Engineered nanoparticles interacting with cells: Size matters[J]. Journal of Nanobiotechnology, 2014, 12(1): 5. doi: 10.1186/1477-3155-12-5. [30] ZHANG H, PENG C, YANG J, et al. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake[J]. Acs Applied Materials Interfaces, 2013, 5(5): 1761-1767. doi: 10.1021/am303005j [31] MA J, LIU R, WANG X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals[J]. Acs Nano, 2015, 9(10): 10498-10515. doi: 10.1021/acsnano.5b04751 [32] SYDLIK S A, JHUNJHUNWALA S, WEBBER M J, et al. In vivo compatibility of graphene oxide with differing oxidation states[J]. Acs Nano, 2015, 9(4): 3866-3874. doi: 10.1021/acsnano.5b01290 [33] ZHANG W, YAN L, LI M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells[J]. Toxicology Letters, 2015, 237(2): 61-71. doi: 10.1016/j.toxlet.2015.05.021 [34] LI R, GUINEY L M, CHANG C H, et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model[J]. Acs Nano, 2018, 12(2): 1390-1402. doi: 10.1021/acsnano.7b07737 [35] LI R, MANSUKHANI N D, GUINEY L M, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings[J]. Acs Nano, 2016, 10(12): 10966-10980. [36] JIANG W, WANG X, OSBORNE O J, et al. Pro-inflammatory and pro-fibrogenic effects of ionic and particulate arsenide and indium-containing semiconductor materials in the murine lung[J]. Acs Nano, 2017, 11(2): 1869-1883. [37] KUDIN K N, OZBAS B, SCHNIEPP H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8(1): 36-41. doi: 10.1021/nl071822y [38] WANG X, MANSUKHANI N D, GUINEY L M, et al. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung[J]. Small, 2015, 11(38): 5079-5087. doi: 10.1002/smll.201500906 [39] GANESAN L P, MATES J M, CHEPLOWITZ A M, et al. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells[J]. Scientific Reports, 2016, 6: 20646. doi: 10.1038/srep20646. [40] XIA T, ZHU Y, MU L, et al. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century[J]. National Science Review, 2016, 3(4): 416-429. doi: 10.1093/nsr/nww064 [41] STEFANIAK A B, GUILMETTE R A, DAY G A, et al. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution[J]. Toxicology in Vitro, 2005, 19(1): 123-134. doi: 10.1016/j.tiv.2004.08.001 [42] ZHOU J, TAN S H, NICOLAS V, et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion[J]. Cell Research, 2013, 23(4): 508-523. doi: 10.1038/cr.2013.11 [43] PETROS R A, DESIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nature Reviews Drug Discovery, 2010, 9(8): 615-627. doi: 10.1038/nrd2591 [44] CHAMPION J A, WALKER A, MITRAGOTRI S. Role of particle size in phagocytosis of polymeric microspheres[J]. Pharmaceutical Research, 2008, 25(8): 1815-1821. doi: 10.1007/s11095-008-9562-y [45] MOGHADDAM M S, HEINY M, SHASTRI V P. Enhanced cellular uptake of nanoparticles by increasing the hydrophobicity of poly(lactic acid) through copolymerization with cell-membrane-lipid components[J]. Chemical Communications, 2015, 51(78): 14605-14608. doi: 10.1039/C5CC06397C [46] MULLER R H, RUHL D, LUCK M, et al. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption[J]. Pharmaceutical Research, 1997, 14(1): 18-24. doi: 10.1023/A:1012043131081 [47] SUN B, WANG X, JI Z, et al. NLRP3 inflammasome activation induced by engineered nanomaterials[J]. Small, 2013, 9(9/10): 1595-1607. doi: 10.1002/smll.201201962 [48] NING L, XIA T, NEL A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles[J]. Free Radical Biology Medicine, 2008, 44(9): 1689-1699. doi: 10.1016/j.freeradbiomed.2008.01.028 -