Immunogenicity of Porcine Epidemic Diarrhea Virus Tandem Epitope Subunit Vaccine
-
摘要: 将纤突蛋白S的COE区域 (E1)、S1D区域 (E2)、C末端区域 (E3) 以及膜蛋白M的M3区域 (E4) 设计成串联表位亚单位 (EC),以报道的COE和S1亚单位作为对照,构建了不同亚单位疫苗的杆状病毒载体表达系统。杆状病毒载体表达系统生产的目标蛋白采用镍柱亲和层析进行纯化。在BALB/c小鼠上,不同亚单位疫苗的免疫原性初步评价结果表明,EC、COE和S1序列分别成功插入杆状病毒基因组,EC、COE和S1蛋白均能在Sf9细胞中分泌表达,但是纯化条件依蛋白不同而有差异。与COE和S1亚单位疫苗相比,EC亚单位疫苗能激发小鼠产生更多的特异性免疫球蛋白IgG、干扰素-γ和肿瘤坏死因子-α。结果表明,各个亚单位疫苗均能激发小鼠的体液免疫与细胞免疫,与COE和S1亚单位疫苗相比,EC亚单位疫苗能更好地激发小鼠的体液免疫与细胞免疫。
-
关键词:
- 猪流行性腹泻病毒 /
- 串联表位 /
- 亚单位疫苗 /
- 杆状病毒载体表达系统
Abstract: Porcine epidemic diarrhea virus can infect pigs at different ages and cause porcine epidemic diarrhea, leading to heavy economic losses to the pig industry around the world. There is currently no effective treatment for porcine epidemic diarrhea, and vaccination seems to be its key preventive approach. In order to develop an effective porcine epidemic diarrhea virus subunit vaccine, a tandem epitope subunit (EC) was assembled from the COE region (E1), S1D region (E2), and C-terminal region (E3) of spike protein, and the M3 region (E4) of membrane protein, and a baculovirus expression system was constructed for the production of subunit vaccine EC. The reported candidate subunits COE and S1 were used as positive controls. Three target proteins of EC, COE and S1 were produced by baculovirus expression vector systems in insect cell line Sf9, and purified with a nickel affinity chromatography column, respectively. The immunogenicity of the different subunit vaccines was evaluated on BALB/c mouse. The results showed that the EC, COE and S1 gene sequences were successfully inserted into the baculovirus genome. All the three proteins could be expressed and secreted into culture supernatant. Compared with the subunit vaccines of COE and S1, subunit vaccine EC could stimulate mouse to produce larger amount of specific immunoglobulin G, interferon-γ and tumor necrosis factor-α than controls. The above results indicate that each subunit vaccine can stimulate the humoral and cellular immunity of mouse, and the immunogenicity of subunit vaccine EC is much stronger. -
图 2 Western Blot 检测COE (a)、EC (b) 和S1 (c) 蛋白在昆虫细胞系Sf9中表达
Figure 2. Expressions of the COE (a), EC (b) and S1 (c) proteins in insect cell line Sf9 detected by Western Blot
1— Culture supernatant of sf9 cells infected with recombinant baculovirus; 2— Lysate supernatant of sf9 cells infected with recombinant baculovirus; 3—Lysate precipitation of sf9 cells infected with recombinant baculovirus
表 1 引物信息
Table 1. Primers information
Primer names Primer sequences (5’→3’) signal-F GGCGCGGGATCCATGCGCTCACTGATCTAC signal-R GCAGAGTCACACGGGTCACGTCCTGAGGCA E1-F CGTGACCCGTGTGACTCTGCCCTCATTCAA E1-R CATGAAGGAGACGTCAGTGCTACCGCCTCCACCGACGTCAGTGAT E1-R1 GTGATGGTGATGGTGATGGACGTCAGTGATGCCTTCCAGAGGC E2-F TAGCACTGACGTCTCCTTCATGACCCTGGA E2-R GAAAGCCTCGTAGGGCTGCAGGCTACCGCCTCCACCGATAGACATGCT E4-F GTAGCCTGCAGCCCTACGAGGCTTTCGGTGGAGGCGGTAGCGTGCAGGTC E4-R GTGATGGTGATGGTGATGCACCAGGTGCAGGACCTTCTCGGAGTCAGT S1-R GTGATGGTGATGGTGATGGTGGTAGAAGAAACCTGGCAGTTCA P-EC-F GTGCATCACCATCACCATCACTAAAAGCTTGTCGAGAAGTACTAGAG P-E1-F GTCCATCACCATCACCATCACTAAAAGCTTGTCGAGAAGTACTAGAGGA P-S1-F ACCATCACCATCACCATCACTAAAAGCTTGTCGAGAAGTACTAGAG P-EC-R TCAGTGAGCGCATGGATCCCGCGCCCGATGGTGGGACG -
[1] CHEN X, ZHANG X X, LI C, et al. Epidemiology of porcine epidemic diarrhea virus among Chinese pig populations: A meta-analysis[J]. Microbial Pathogenesis, 2019, 129: 43-49. doi: 10.1016/j.micpath.2019.01.017 [2] SONG D, PARK B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines[J]. Virus Genes, 2012, 44(2): 167-175. doi: 10.1007/s11262-012-0713-1 [3] PENSAERT M B, BOUCK P D. A new coronavirus-like particle associated with diarrhea in swine[J]. Archives of Virology, 1978, 58(3): 243-247. doi: 10.1007/BF01317606 [4] KOCHERHANS R, BRIDGEN A, ACKERMANN M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence[J]. Virus Genes, 2001, 23(2): 137-144. doi: 10.1023/A:1011831902219 [5] DUARTE M, TOBLER K, BRIDGEN A, et al. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF[J]. Virology, 1994, 198(2): 466-476. doi: 10.1006/viro.1994.1058 [6] DUARTE M, LAUDE H. Sequence of the spike protein of the porcine epidemic diarrhoea virus[J]. Journal of General Virology, 1994, 75(5): 1195-1200. doi: 10.1099/0022-1317-75-5-1195 [7] BRIDGEN A, DUARTE M, TOBLER K, et al. Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus[J]. Journal of General Virology, 1993, 74(9): 1795-1804. doi: 10.1099/0022-1317-74-9-1795 [8] OKDA F A, LAWSON S, SINGREY A, et al. The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes[J]. Virology, 2017, 509: 185-194. doi: 10.1016/j.virol.2017.06.013 [9] CHANG S H, BAE J L, KANG T J, et al. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus[J]. Molecules & Cells, 2002, 14(2): 295-299. [10] CRUZ D, KIM C J, SHIN H J. The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus[J]. Virus Research, 2008, 132(1/2): 192-196. doi: 10.1016/j.virusres.2007.10.015 [11] CRUZ D, KIM C J, SHIN H J. Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes[J]. Virology, 2006, 354(1): 28-34. doi: 10.1016/j.virol.2006.04.027 [12] SUN D B, LI F, SHI H Y, et al. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein[J]. Veterinary Microbiology, 2008, 131(1/2): 73-81. doi: 10.1016/j.vetmic.2008.02.022 [13] LI C, LI W, ESESARTE E, et al. Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies[J]. Journal of Virology, 2017, 91(12): e00273. [14] ZHANG Z, CHEN J, SHI H, et al. Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus[J]. Virology Journal, 2012, 9(1): 225-233. doi: 10.1186/1743-422X-9-225 [15] LI Z, MA Z, LI Y, et al. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines[J]. Microbial Pathogenesis, 2020, 149: 104553. doi: 10.1016/j.micpath.2020.104553 [16] WON H, LIM J, NOH Y H, et al. Efficacy of porcine epidemic diarrhea vaccines: A systematic review and meta-analysis[J]. Vaccines, 2020, 8(4): 642. doi: 10.3390/vaccines8040642 [17] LI Q, XU Z, WU T, et al. A flagellin-adjuvanted PED subunit vaccine improved protective efficiency against PEDV variant challenge in pigs[J]. Vaccine, 2018, 36(29): 4228-4235. doi: 10.1016/j.vaccine.2018.05.124 [18] HOU X L, YU L Y, LIU J, et al. Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria[J]. Vaccine, 2008, 26(1): 24-31. [19] CHANG C Y, HSU W T, CHAO Y C, et al. Display of porcine epidemic diarrhea virus spike protein on baculovirus to improve immunogenicity and protective efficacy[J]. Viruses, 2018, 10(7): 346. doi: 10.3390/v10070346 [20] OH J, LEE K W, CHOI H W, et al. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein[J]. Archives of Virology, 2014, 159(11): 2977-2987. doi: 10.1007/s00705-014-2163-7 [21] 何海健, 王晓杜, 吴瑗, 等. PEDV分离株S1基因的重组杆状病毒真核表达[J]. 中国畜牧兽医, 2019, 46(3): 832-839. -