高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

石蜡基核壳结构相变储能复合材料的制备及性能

何绪权 王政华 张玲 李春忠

何绪权, 王政华, 张玲, 李春忠. 石蜡基核壳结构相变储能复合材料的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210512001
引用本文: 何绪权, 王政华, 张玲, 李春忠. 石蜡基核壳结构相变储能复合材料的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210512001
HE Xuquan, WANG Zhenghua, ZHANG Ling, LI Chunzhong. Preparation and properties of paraffin-based core-shell phase change energy storage composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210512001
Citation: HE Xuquan, WANG Zhenghua, ZHANG Ling, LI Chunzhong. Preparation and properties of paraffin-based core-shell phase change energy storage composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210512001

石蜡基核壳结构相变储能复合材料的制备及性能

doi: 10.14135/j.cnki.1006-3080.20210512001
基金项目: 国家自然科学基金(21878092,21838003),上海市教育委员会科研创新计划项目,上海市优秀学术人(19XD1401400)
详细信息
    作者简介:

    何绪权(1995—),男,山东日照人,硕士生,研究方向为相变储能复合材料。E-mail:19921252560@163.com

    通讯作者:

    张 玲,E-mail:zlingzi@ecust.edu.cn

    李春忠,E-mail:czli@ecust.edu.cn

  • 中图分类号: TB33

Preparation and properties of paraffin-based core-shell phase change energy storage composites

  • 摘要: 将石蜡熔融浸渍在膨胀石墨(EG)中得到核组分(EG-Paraffin),将制得的Paraffin@SiO2微胶囊填充在环氧树脂(Ep)中得到壳组分(Ep-Paraffin@SiO2),然后通过简单的模压成型制备了具有宏观核-壳结构的相变复合材料(EG-Paraffin/Ep-Paraffin@SiO2)。实验结果表明,这种宏观的核-壳结构赋予了相变复合材料优异的防泄漏性能和形状稳定性。壳组分中的微胶囊使相变复合材料保持较高的焓值(大于144 J/g)。而核组分中的膨胀石墨一方面能够有效封装石蜡,另一方面可以大大提升相变复合材料的传热速率。优异的综合性能使此相变复合材料在热能储存和热管理领域具有巨大的应用潜力。

     

  • 图  1  Paraffin@SiO2微胶囊的制备流程图

    Figure  1.  Preparation process of Paraffin@SiO2 microcapsules

    图  2  EG-paraffin/Ep-Paraffin@SiO2相变复合材料的制备流程图

    Figure  2.  Preparation process diagram of EG-paraffin/Ep-Paraffin@SiO2

    图  5  (a, d) EG的SEM图像;(b) EG-Paraffin/Ep-Paraffin@SiO2相变复合材料的断面图;(c) 核组分(EG-Paraffin), (e) 壳组分(Ep-Paraffin@SiO2)以及(f) 核-壳界面处的SEM图像

    Figure  5.  (a, d) SEM image of EG; (b) cross-sectional view of EG-Paraffin/Ep-Paraffin@SiO2 composite; (c) SEM image of the core component (EG-Paraffin); (e) SEM image of the shell component (Ep-Paraffin@SiO2); (f) SEM image at the core-shell interface

    图  3  微胶囊的(a) SEM图像和(b) TEM图像;(c) SiO2颗粒对比样的SEM图像;石蜡、SiO2对比样和Paraffin@SiO2微胶囊的(d)XRD图谱和(e) FTIR图谱

    Figure  3.  (a) SEM images and (b) the TEM image of the microcapsules; (c) the SEM image of the SiO2 contrast sample; (d) the XRD patterns and (e) the FTIR spectra of paraffin, SiO2 contrast sample and paraffin@SiO2 microcapsules

    图  4  含有(a, d) 3% EG, (b, e) 5% EG和(c, f) 8% EG的EG-Paraffin在60 ℃下加热1 h前后的泄露图片

    Figure  4.  Leakage pictures of EG-Paraffin with (a, d) 3% EG, (b, e) 5% EG and (c, f) 8% EG before and after heating at 60 ℃ for 1 h

    图  6  核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC曲线

    Figure  6.  DSC curves of core component (EG-Paraffin) and shell component (Ep-Paraffin@SiO2)

    图  7  在加热受力前(a) EG-Paraffin和(b) EG-Paraffin/Ep-Paraffin@SiO2的泄露图像;在加热受力后(c) EG-Paraffin and (d) EG-Paraffin/Ep-Paraffin@SiO2的泄露图像;(e) 经过泄露测试后两样品的泄露率;(f) 泄露测试示意图

    Figure  7.  Leakage images of (a) EG-Paraffin and (b) EG-Paraffin/Ep-Paraffin@SiO2 before heating under load; Leakage images of (c) EG-Paraffin and (d) EG-Paraffin/Ep-Paraffin@SiO2 after heating under load; (e) Leakage rate of the two samples; (f) Schematic diagram of leakage test

    图  8  EG-Paraffin, Ep-Paraffin@SiO2和EG-Paraffin/Ep-Paraffin@SiO2的温度(上表面)-时间曲线

    Figure  8.  Temperature (the upper surface)-time curves of EG-Paraffin, Ep-Paraffin@SiO2 and EG-Paraffin/Ep-Paraffin@SiO2

    图  9  100个热循环前后(a) EG-Paraffin和(b) Ep-Paraffin@SiO2的DSC曲线

    Figure  9.  DSC curves of (a) EG-Paraffin and (b) Ep-Paraffin@SiO2 before and after 100 thermal cycles

    图  10  相变复合材料板

    Figure  10.  Phase change composite board

    表  1  核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的组成配方

    Table  1.   Formulation of the core component (EG-Paraffin) and the shell component (Ep-Paraffin@SiO2)

    The core componentw(EG-Paraffin)w(Ep-Paraffin@SiO2)
    EGParaffinEpParaffin@SiO2
    EG-Paraffin8.00t%92.00t%60%40%
    下载: 导出CSV

    表  2  石蜡、核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC数据

    Table  2.   DSC data of paraffin, core component (EG-Paraffin) and shell component (Ep-Paraffin@SiO2)

    SampleMelting processSolidifying process
    Hm/ J·g−1Tm/ ℃Hs/ J·g−1Ts/ ℃
    Paraffin227.8745.22/47.02224.8538.66/42.56
    EG-Paraffin205.4645.47/48.07207.6537.60/42.08
    Ep-Paraffin@SiO253.6444.84/47.0453.7536.95/43.13
    下载: 导出CSV

    表  3  EG-Paraffin/Ep-Paraffin@SiO2和对比样(EG-Paraffin/Ep)的核/壳比重和热焓值

    Table  3.   The core/shell ratio and enthalpy of EG-Paraffin/Ep-Paraffin@SiO2 and the comparison sample

    Sample aw (core component)c/
    (%)
    w (shell component)d/
    (%)
    ΔHm,theoretical/
    (J·g−1
    EG-Paraffin/Ep-Paraffin@SiO255.0045.00137.14
    EG-Paraffin/Ep b50.9049.10104.58
    a−The sample is a cylinder with a base diameter of 14.65-14.80 mm and a height of 6.20-6.30 mm; b−Contrast sample. The shell component is pure epoxy resin (Ep); c−The nuclear component is EG-paraffin; d−The shell components of the two samples are Ep-Paraffin@SiO2 and Ep, respectively; And the thickness of the shell is 0.85-1.00 mm.
    下载: 导出CSV

    表  4  100个热循环前后核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC数据

    Table  4.   DSC data of the core component (EG-Paraffin) and the shell component (Ep-Paraffin@SiO2) before and after 100 thermal cycles

    SampleMelting processSolidifying process
    Hm/J·g−1Tm/℃Hs/ J·g−1Ts/℃
    EG-Paraffin1st cycle206.4645.47/48.07207.6537.60/42.08
    100th cycle205.8645.32/48.03206.5237.73/42.08
    Ep-Paraffin@SiO21st cycle53.6444.84/47.0454.6536.95/43.13
    100th cycle53.1544.62/47.0953.9332.19/38.54
    下载: 导出CSV

    表  5  相变复合材料板的相关参数

    Table  5.   Related parameters of the phase change composite board.

    w (core component)a/%w (shell component)b/%Total weight/gSize/cmΔHm,theoretical/
    J·g−1
    59.6 t40.40 t73.0010×10×1144.12
    下载: 导出CSV
  • [1] HUANG X, ALVA G, JIA Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145. doi: 10.1016/j.rser.2017.01.048
    [2] NAZIR H, MARIAH B, KANNAN A M, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
    [3] ZHANG Y Z, ZHENG S L, ZHU S Q, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. doi: 10.1016/j.enconman.2018.06.002
    [4] UMAIR M M, Y. ZHANG Y A, IQBAL K, et al Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review[J]. Applied Energy, 2019, 235: 846-873. doi: 10.1016/j.apenergy.2018.11.017
    [5] KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169-1182. doi: 10.1016/j.energy.2018.08.068
    [6] LIU Z M, WU B, FU X W, et al. Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2017, 170: 197-204. doi: 10.1016/j.solmat.2017.04.012
    [7] TANG B T, WANG L J, XU Y J, et al. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 144: 1-6. doi: 10.1016/j.solmat.2015.08.012
    [8] AFTAB W, MAHMOOD A, GUO W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. doi: 10.1016/j.ensm.2018.10.014
    [9] TANG Y J, JIA Y T, ALVA G, et al. Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 421-429. doi: 10.1016/j.solmat.2016.06.049
    [10] LIAN Q S, Li Y, SAYYED A A S, et al. Facile Strategy in Designing Epoxy/Paraffin Multiple Phase Change Materials for Thermal Energy Storage Applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3375-3384.
    [11] JIA X W, LI Q Y, AO C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710. doi: 10.1016/j.compositesa.2019.105710
    [12] YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136(1): 211-222.
    [13] ZHANG X L, LIN Q L, LUO H J, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260: 114278. doi: 10.1016/j.apenergy.2019.114278
    [14] 叶志林, 魏婷, 易红玲, 等. 癸酸-棕榈酸/膨胀珍珠岩定型相变材料的制备与热性能[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 495-500.
    [15] 刘志红, 吴唯, 张雪薇. HCPs基/棕榈酸复合相变材料的制备及其储热性能[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 360-367.
    [16] YI H, AI Z, ZHAO Y L, et al. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233
    [17] YANG J, YU P, TANG L S, et al. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion[J]. Nanoscale, 2017, 9(45): 17704-17709. doi: 10.1039/C7NR05449A
    [18] ZHANG L, ZHOU K C, WEI Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233-234(1): 208-219.
    [19] LI C C, ZHANG B, LIU Q X, et al. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339. doi: 10.1016/j.est.2020.101339
    [20] HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. doi: 10.1016/j.cej.2018.09.013
    [21] LIAN Q S, LI K, SAYYED A A S, et al. Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior[J]. Journal of Materials Chemistry A, 2017, 5(28): 14562-14574. doi: 10.1039/C7TA02816D
    [22] ZHANG W B, ZHANG Y X, LING Z Y, et al. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials[J]. Applied Energy, 2019, 253: 113540. doi: 10.1016/j.apenergy.2019.113540
    [23] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183(1): 116151.
    [24] LI B X, LIU T X, HU L Y, et al. Fabrication and Properties of Microencapsulated Paraffin@SiO2 Phase Change Composite for Thermal Energy Storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380.
    [25] HE X Q, ZHANG L, LI C Z. PEG-based polyurethane/Paraffin@SiO2/Boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property[J]. Composites Communications, 2021, 25: 100609. doi: 10.1016/j.coco.2020.100609
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  44
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 网络出版日期:  2021-07-12

目录

    /

    返回文章
    返回