高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

石蜡基核壳结构相变储能复合材料的制备及性能

何绪权 王政华 张玲 李春忠

何绪权, 王政华, 张玲, 李春忠. 石蜡基核壳结构相变储能复合材料的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210512001
引用本文: 何绪权, 王政华, 张玲, 李春忠. 石蜡基核壳结构相变储能复合材料的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210512001
HE Xuquan, WANG Zhenghua, ZHANG Ling, LI Chunzhong. Preparation and Properties of Paraffin-Based Core-Shell Phase Change Energy Storage Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210512001
Citation: HE Xuquan, WANG Zhenghua, ZHANG Ling, LI Chunzhong. Preparation and Properties of Paraffin-Based Core-Shell Phase Change Energy Storage Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210512001

石蜡基核壳结构相变储能复合材料的制备及性能

doi: 10.14135/j.cnki.1006-3080.20210512001
基金项目: 国家自然科学基金(21878092,21838003);上海市教育委员会科研创新计划;上海市优秀学术/技术带头人计划(19XD1401400)
详细信息
    作者简介:

    何绪权(1995—),男,山东日照人,硕士生,研究方向为相变储能复合材料。E-mail:19921252560@163.com

    通讯作者:

    张 玲,E-mail:zlingzi@ecust.edu.cn

    李春忠,E-mail:czli@ecust.edu.cn

  • 中图分类号: TB33

Preparation and Properties of Paraffin-Based Core-Shell Phase Change Energy Storage Composites

  • 摘要: 将石蜡熔融浸渍在膨胀石墨(EG)中得到核组分(EG-Paraffin),将制得的Paraffin@SiO2微胶囊填充在环氧树脂(Ep)中得到壳组分(Ep-Paraffin@SiO2),然后通过简单的模压成型制备了具有宏观核-壳结构的相变复合材料(EG-Paraffin/Ep-Paraffin@SiO2)。实验结果表明,这种宏观的核-壳结构赋予了相变复合材料优异的防泄漏性能和形状稳定性。壳组分中的微胶囊使相变复合材料保持较高的焓值(大于144 J/g)。而核组分中的膨胀石墨一方面能够有效封装石蜡,另一方面可以大大提升相变复合材料的传热速率。

     

  • 图  1  Paraffin@SiO2微胶囊的制备流程图

    Figure  1.  Preparation process of Paraffin@SiO2 microcapsules

    图  2  EG-paraffin/Ep-Paraffin@SiO2的制备流程图

    Figure  2.  Preparation process diagram of EG-paraffin/Ep-Paraffin@SiO2

    图  3  微胶囊样品的图像及谱图

    Figure  3.  Image and spectra of microcapsule samples

    图  4  EG-Paraffin在60 ℃下加热1 h前后的泄露图片

    Figure  4.  Leakage pictures of EG-Paraffin before and after heating at 60 ℃ for 1 h

    图  5  复合材料样品的形貌表征

    Figure  5.  Morphology characterization of composite samples

    图  6  核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC曲线

    Figure  6.  DSC curves of core component (EG-Paraffin) and shell component (Ep-Paraffin@SiO2)

    图  7  样品在受力时的泄露率和形状稳定性

    Figure  7.  Leakage rate and stability of the sample under load

    图  8  EG-Paraffin、Ep-Paraffin@SiO2 和EG-Paraffin/Ep-Paraffin@SiO2的温度(上表面)-时间曲线

    Figure  8.  Temperature (the upper surface)-time curves of EG-Paraffin, Ep-Paraffin@SiO2 and EG-Paraffin/Ep-Paraffin@SiO2

    图  9  100次热循环前后EG-Paraffin (a)和Ep-Paraffin@SiO2(b)的DSC曲线

    Figure  9.  DSC curves of EG-Paraffin (a) and Ep-Paraffin@SiO2 (b) before and after 100 thermal cycles

    图  10  相变复合材料板

    Figure  10.  Phase change composite board

    表  1  核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的组成配方

    Table  1.   Formulation of core component (EG-Paraffin) and the shell component (Ep-Paraffin@SiO2)

    w(EG-Paraffin)/%w(Ep-Paraffin@SiO2)/%
    EGParaffinEpParaffin@SiO2
    8926040
    下载: 导出CSV

    表  2  石蜡、核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC数据

    Table  2.   DSC data of paraffin, core component (EG-Paraffin) and shell component (Ep-Paraffin@SiO2)

    Sample Hm/ (J·g−1)Tm/ ℃Hs/ (J·g−1)Ts/ ℃
    Paraffin227.8745.22/47.02224.8538.66/42.56
    EG-Paraffin205.4645.47/48.07207.6537.60/42.08
    Ep-Paraffin@SiO253.6444.84/47.0453.7536.95/43.13
    m—Melting process; S—Solidifying process
    下载: 导出CSV

    表  3  EG-Paraffin/Ep-Paraffin@SiO2和对比样品(EG-Paraffin/Ep)的核/壳比例和热焓值

    Table  3.   Core/shell ratio and enthalpy of EG-Paraffin/Ep-Paraffin@SiO2 and the comparison sample (EG-Paraffin/Ep)

    Sample a)w (Core component)c)/%w (Shell component)d)/%ΔHm,theoretical/
    (J·g−1
    EG-Paraffin/
    Ep-Paraffin@SiO2
    55.0045.00137.14
    EG-Paraffin/Ep b)50.9049.10104.58
    a) The sample is a cylinder with a base diameter of 14.65~14.80 mm and a height of 6.20~6.30 mm; b) Contrast sample; c) The nuclear component is EG-Paraffin; d) The shell components of the two samples are Ep-Paraffin@SiO2 and Ep, respectively; And the thickness of the shell is 0.85~1.00 mm
    下载: 导出CSV

    表  4  100次热循环前后EG-Paraffin和Ep-Paraffin@SiO2的DSC数据

    Table  4.   DSC data of EG-Paraffi and Ep-Paraffin@SiO2 before and after 100 thermal cycles

    Sample Cycle Hm/(J·g−1Tm/℃Hs/ (J·g−1Ts/℃
    EG-Paraffin1st206.4645.47/48.07207.6537.60/42.08
    100 th205.8645.32/48.03206.5237.73/42.08
    Ep-Paraffin@SiO21st53.6444.84/47.0454.6536.95/43.13
    100 th53.1544.62/47.0953.9332.19/38.54
    m—Melting process; S—Solidifying process
    下载: 导出CSV

    表  5  相变复合材料板的相关参数

    Table  5.   Related parameters of the phase change composite board

    w (Core component)/%w (Shell component)/%mtotal/gSize/cmΔHm,theoretical/
    (J·g−1)
    59.640.4073.0010×10×1144.12
    下载: 导出CSV
  • [1] HUANG X, ALVA G, JIA Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145. doi: 10.1016/j.rser.2017.01.048
    [2] NAZIR H, MARIAH B, KANNAN A M, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
    [3] ZHANG Y Z, ZHENG S L, ZHU S Q, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. doi: 10.1016/j.enconman.2018.06.002
    [4] UMAIR M M, Y. ZHANG Y A, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage: A review[J]. Applied Energy, 2019, 235: 846-873. doi: 10.1016/j.apenergy.2018.11.017
    [5] KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169-1182. doi: 10.1016/j.energy.2018.08.068
    [6] LIU Z M, WU B, FU X W, et al. Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2017, 170: 197-204. doi: 10.1016/j.solmat.2017.04.012
    [7] TANG B T, WANG L J, XU Y J, et al. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 144: 1-6. doi: 10.1016/j.solmat.2015.08.012
    [8] AFTAB W, MAHMOOD A, GUO W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. doi: 10.1016/j.ensm.2018.10.014
    [9] TANG Y J, JIA Y T, ALVA G, et al. Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 421-429. doi: 10.1016/j.solmat.2016.06.049
    [10] LIAN Q S, Li Y, SAYYED A A S, et al. Facile strategy in designing epoxy/paraffin multiple phase change materials for thermal energy storage applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3375-3384.
    [11] JIA X W, LI Q Y, AO C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710. doi: 10.1016/j.compositesa.2019.105710
    [12] YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136(1): 211-222.
    [13] ZHANG X L, LIN Q L, LUO H J, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260: 114278. doi: 10.1016/j.apenergy.2019.114278
    [14] 叶志林, 魏婷, 易红玲, 等. 癸酸-棕榈酸/膨胀珍珠岩定型相变材料的制备与热性能[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 495-500.
    [15] 刘志红, 吴唯, 张雪薇. HCPs基/棕榈酸复合相变材料的制备及其储热性能[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 360-367.
    [16] YI H, AI Z, ZHAO Y L, et al. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233
    [17] YANG J, YU P, TANG L S, et al. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion[J]. Nanoscale, 2017, 9(45): 17704-17709. doi: 10.1039/C7NR05449A
    [18] ZHANG L, ZHOU K C, WEI Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233-234(1): 208-219.
    [19] LI C C, ZHANG B, LIU Q X, et al. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339. doi: 10.1016/j.est.2020.101339
    [20] HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. doi: 10.1016/j.cej.2018.09.013
    [21] LIAN Q S, LI K, SAYYED A A S, et al. Study on a reliable epoxy-based phase change material: Facile preparation, tunable properties, and phase/microphase separation behavior[J]. Journal of Materials Chemistry A, 2017, 5(28): 14562-14574. doi: 10.1039/C7TA02816D
    [22] ZHANG W B, ZHANG Y X, LING Z Y, et al. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials[J]. Applied Energy, 2019, 253: 113540. doi: 10.1016/j.apenergy.2019.113540
    [23] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183(1): 116151.
    [24] LI B X, LIU T X, HU L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380.
    [25] HE X Q, ZHANG L, LI C Z. PEG-based polyurethane/Paraffin@SiO2/Boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property[J]. Composites Communications, 2021, 25: 100609. doi: 10.1016/j.coco.2020.100609
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  112
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 网络出版日期:  2021-07-12

目录

    /

    返回文章
    返回