Preparation and Properties of Paraffin-Based Core-Shell Phase Change Energy Storage Composites
-
摘要: 将石蜡熔融浸渍在膨胀石墨(EG)中得到核组分(EG-Paraffin),将制得的Paraffin@SiO2微胶囊填充在环氧树脂(Ep)中得到壳组分(Ep-Paraffin@SiO2),然后通过简单的模压成型制备了具有宏观核-壳结构的相变复合材料(EG-Paraffin/Ep-Paraffin@SiO2)。实验结果表明,这种宏观的核-壳结构赋予了相变复合材料优异的防泄漏性能和形状稳定性。壳组分中的微胶囊使相变复合材料保持较高的焓值(大于144 J/g)。而核组分中的膨胀石墨一方面能够有效封装石蜡,另一方面可以大大提升相变复合材料的传热速率。Abstract: The core component (EG-Paraffin) was obtained by impregnation of Paraffin in expanded graphite (EG), and the shell component (Ep-Paraffin@SiO2) was obtained by filling the obtained Paraffin@SiO2 microcapsules into epoxy resin. The EG-Paraffin/Ep-Paraffin@SiO2 phase change composite with macroscopic core-shell structure was prepared by simple molding. The experimental results showed that the macroscopic core-shell structure endowed the phase change composite with excellent leak-proof performance and shape stability. The microcapsules in the shell component maintained a high enthalpy (greater than 144 J/g) of the phase change composite. On the one hand, EG in the core component could encapsulate the paraffin effectively; On the other hand, the heat transfer rate of the phase change composites could be greatly improved. The excellent comprehensive performance of this phase change composite had great application potential in the field of thermal energy storage and thermal management.
-
表 1 核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的组成配方
Table 1. Formulation of core component (EG-Paraffin) and the shell component (Ep-Paraffin@SiO2)
w(EG-Paraffin)/% w(Ep-Paraffin@SiO2)/% EG Paraffin Ep Paraffin@SiO2 8 92 60 40 表 2 石蜡、核组分(EG-Paraffin)和壳组分(Ep-Paraffin@SiO2)的DSC数据
Table 2. DSC data of paraffin, core component (EG-Paraffin) and shell component (Ep-Paraffin@SiO2)
Sample Hm/ (J·g−1) Tm/ ℃ Hs/ (J·g−1) Ts/ ℃ Paraffin 227.87 45.22/47.02 224.85 38.66/42.56 EG-Paraffin 205.46 45.47/48.07 207.65 37.60/42.08 Ep-Paraffin@SiO2 53.64 44.84/47.04 53.75 36.95/43.13 m—Melting process; S—Solidifying process 表 3 EG-Paraffin/Ep-Paraffin@SiO2和对比样品(EG-Paraffin/Ep)的核/壳比例和热焓值
Table 3. Core/shell ratio and enthalpy of EG-Paraffin/Ep-Paraffin@SiO2 and the comparison sample (EG-Paraffin/Ep)
Sample a) w (Core component)c)/% w (Shell component)d)/% ΔHm,theoretical/
(J·g−1)EG-Paraffin/
Ep-Paraffin@SiO255.00 45.00 137.14 EG-Paraffin/Ep b) 50.90 49.10 104.58 a) The sample is a cylinder with a base diameter of 14.65~14.80 mm and a height of 6.20~6.30 mm; b) Contrast sample; c) The nuclear component is EG-Paraffin; d) The shell components of the two samples are Ep-Paraffin@SiO2 and Ep, respectively; And the thickness of the shell is 0.85~1.00 mm 表 4 100次热循环前后EG-Paraffin和Ep-Paraffin@SiO2的DSC数据
Table 4. DSC data of EG-Paraffi and Ep-Paraffin@SiO2 before and after 100 thermal cycles
Sample Cycle Hm/(J·g−1) Tm/℃ Hs/ (J·g−1) Ts/℃ EG-Paraffin 1st 206.46 45.47/48.07 207.65 37.60/42.08 100 th 205.86 45.32/48.03 206.52 37.73/42.08 Ep-Paraffin@SiO2 1st 53.64 44.84/47.04 54.65 36.95/43.13 100 th 53.15 44.62/47.09 53.93 32.19/38.54 m—Melting process; S—Solidifying process 表 5 相变复合材料板的相关参数
Table 5. Related parameters of the phase change composite board
w (Core component)/% w (Shell component)/% mtotal/g Size/cm ΔHm,theoretical/
(J·g−1)59.6 40.40 73.00 10×10×1 144.12 -
[1] HUANG X, ALVA G, JIA Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145. doi: 10.1016/j.rser.2017.01.048 [2] NAZIR H, MARIAH B, KANNAN A M, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126 [3] ZHANG Y Z, ZHENG S L, ZHU S Q, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. doi: 10.1016/j.enconman.2018.06.002 [4] UMAIR M M, Y. ZHANG Y A, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage: A review[J]. Applied Energy, 2019, 235: 846-873. doi: 10.1016/j.apenergy.2018.11.017 [5] KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169-1182. doi: 10.1016/j.energy.2018.08.068 [6] LIU Z M, WU B, FU X W, et al. Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2017, 170: 197-204. doi: 10.1016/j.solmat.2017.04.012 [7] TANG B T, WANG L J, XU Y J, et al. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 144: 1-6. doi: 10.1016/j.solmat.2015.08.012 [8] AFTAB W, MAHMOOD A, GUO W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. doi: 10.1016/j.ensm.2018.10.014 [9] TANG Y J, JIA Y T, ALVA G, et al. Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 421-429. doi: 10.1016/j.solmat.2016.06.049 [10] LIAN Q S, Li Y, SAYYED A A S, et al. Facile strategy in designing epoxy/paraffin multiple phase change materials for thermal energy storage applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3375-3384. [11] JIA X W, LI Q Y, AO C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710. doi: 10.1016/j.compositesa.2019.105710 [12] YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136(1): 211-222. [13] ZHANG X L, LIN Q L, LUO H J, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260: 114278. doi: 10.1016/j.apenergy.2019.114278 [14] 叶志林, 魏婷, 易红玲, 等. 癸酸-棕榈酸/膨胀珍珠岩定型相变材料的制备与热性能[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 495-500. [15] 刘志红, 吴唯, 张雪薇. HCPs基/棕榈酸复合相变材料的制备及其储热性能[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 360-367. [16] YI H, AI Z, ZHAO Y L, et al. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233 [17] YANG J, YU P, TANG L S, et al. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion[J]. Nanoscale, 2017, 9(45): 17704-17709. doi: 10.1039/C7NR05449A [18] ZHANG L, ZHOU K C, WEI Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233-234(1): 208-219. [19] LI C C, ZHANG B, LIU Q X, et al. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339. doi: 10.1016/j.est.2020.101339 [20] HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. doi: 10.1016/j.cej.2018.09.013 [21] LIAN Q S, LI K, SAYYED A A S, et al. Study on a reliable epoxy-based phase change material: Facile preparation, tunable properties, and phase/microphase separation behavior[J]. Journal of Materials Chemistry A, 2017, 5(28): 14562-14574. doi: 10.1039/C7TA02816D [22] ZHANG W B, ZHANG Y X, LING Z Y, et al. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials[J]. Applied Energy, 2019, 253: 113540. doi: 10.1016/j.apenergy.2019.113540 [23] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183(1): 116151. [24] LI B X, LIU T X, HU L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. [25] HE X Q, ZHANG L, LI C Z. PEG-based polyurethane/Paraffin@SiO2/Boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property[J]. Composites Communications, 2021, 25: 100609. doi: 10.1016/j.coco.2020.100609 -