高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于CFD-DEM的固液分级过滤模拟

赵钟杰 张建鹏 唐艳玲 肖桐 黄子宾 程振民

赵钟杰, 张建鹏, 唐艳玲, 肖桐, 黄子宾, 程振民. 基于CFD-DEM的固液分级过滤模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210506010
引用本文: 赵钟杰, 张建鹏, 唐艳玲, 肖桐, 黄子宾, 程振民. 基于CFD-DEM的固液分级过滤模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210506010
ZHAO Zhongjie, ZHANG Jianpeng, TANG Yanling, XIAO Tong, HUANG Zibin, CHENG Zhenmin. Simulation of Solid-Liquid Cascade Filtration Based on CFD-DEM[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210506010
Citation: ZHAO Zhongjie, ZHANG Jianpeng, TANG Yanling, XIAO Tong, HUANG Zibin, CHENG Zhenmin. Simulation of Solid-Liquid Cascade Filtration Based on CFD-DEM[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210506010

基于CFD-DEM的固液分级过滤模拟

doi: 10.14135/j.cnki.1006-3080.20210506010
基金项目: 国家重点研发计划(2019YFC1906705);国家自然科学基金资助项目(21676085)
详细信息
    作者简介:

    赵钟杰(1996-),男,浙江人,硕士生,主要研究方向为多相反应器的模拟与计算。E-mail:1012925517@qq.com

    通讯作者:

    程振民,E-mail:zmcheng@ecust.edu.cn

  • 中图分类号: TQ 028.5; TQ 015.9

Simulation of Solid-Liquid Cascade Filtration Based on CFD-DEM

  • 摘要: 采用计算流体力学(CFD)和离散单元法(DEM)耦合的方法,在不同滤层结构的三维随机堆积颗粒层过滤器内进行固液分级过滤的数值模拟研究。实验结果表明,过滤效率的模拟计算值与实验值吻合良好,压降值的偏差在Ergun方程允许误差范围内。过滤器的容垢能力由模型计算的颗粒沉积均匀度表示,并拟合得到沉积均匀度的关联式。颗粒沉积分布的模拟结果显示:单层细滤料过滤器的颗粒沉积主要发生在近入口处,容垢能力较低;分级过滤器的细滤料层保证了高过滤效率,粗滤料层则提供了较大的容垢能力。

     

  • 图  1  颗粒层过滤实验装置

    Figure  1.  Experimental apparatus of granular filtering

    图  2  不同滤料填装方式的过滤器

    Figure  2.  Filters with different granular packing methods

    图  3  CFD-DEM耦合流程图

    Figure  3.  Flow chart of the CFD-DEM coupling

    图  4  过滤器模型及其边界条件

    Figure  4.  Filter model and its boundary conditions

    图  5  颗粒层过滤器分节示意图

    Figure  5.  Schematic diagram of granular bed filter segmentation

    图  6  (a)初始压降的实验值和计算值比较;(b)不同床层深度下的初始压降

    Figure  6.  (a) Comparison of initial pressure drop between experiment and simulation; (b) Initial pressure drop under different bed depths

    图  7  (a)过滤效率的实验值和模拟值比较;(b)不同床层深度下的过滤效率模拟值

    Figure  7.  (a) Comparison of filtration efficiency between experiment and simulation; (b) Simulation results of filtration efficiency under different bed depths

    图  8  不同滤层结构的过滤器的Y

    Figure  8.  Y value of filters with different bed structures

    图  9  细滤料层表面的颗粒沉积形貌

    Figure  9.  Deposition morphology on the surface of fine granular layer

    图  10  不同过滤器同一纵截面的颗粒沉积形貌

    Figure  10.  Particle deposition morphology in the same longitudinal section of different filters

    图  11  颗粒的沉积分布 (a)沉积分数;(b)沉积均匀度

    Figure  11.  Particle deposition distribution (a) Deposited fraction; (b) Deposition uniformity

    图  12  沉积均匀度的预测结果和计算结果的对比

    Figure  12.  Comparison of deposition uniformity between predicted and calculated results

    表  1  模拟物性参数

    Table  1.   Physical parameters in the simulation

    Density/
    (kg·m−3)
    Poisson’s ratioShear modulus/Pa
    Particle (granule)32000.251.0×108
    Wall15000.251.1×109
    Restitution coefficientStatic friction coefficientRolling friction coefficient
    Particle to particle (granule)0.50.1540.05
    Particle to wall0.30.1540.01
    下载: 导出CSV
  • [1] ALTMANN J, REHFELD D, TRAEDER K, et al. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal[J]. Water Research, 2016, 92: 131-139. doi: 10.1016/j.watres.2016.01.051
    [2] ANDREASEN R R, PUGLIESE L, POULSEN T G. Water flow exchange characteristics in coarse granular filter media[J]. Chemical Engineering Journal, 2013, 221: 292-299. doi: 10.1016/j.cej.2013.02.002
    [3] STANGHELLE D, SLUNGAARD T, SONJU O K. Granular bed filtration of high temperature biomass gasification gas[J]. Journal of Hazardous Materials, 2007, 144(3): 668-672. doi: 10.1016/j.jhazmat.2007.01.092
    [4] XIAO G, WANG X H, ZHANG J P, et al. Granular bed filter: a promising technology for hot gas clean-up[J]. Powder Technology, 2013, 244: 93-99. doi: 10.1016/j.powtec.2013.04.003
    [5] VEERAPANENI S, WIESNER M R. Role of suspension polydispersivity in granular media filtration[J]. Journal of Environmental Engineering, 1993, 119(1): 172-190. doi: 10.1061/(ASCE)0733-9372(1993)119:1(172)
    [6] SCHMIDT E W, GIESEKE J A, GELFAND P, et al. Filtration theory for granular beds[J]. Journal of the Air Pollution Control Association, 1978, 28(2): 143-146. doi: 10.1080/00022470.1978.10470582
    [7] ZAMANI A, MAINI B. Flow of dispersed particles through porous media — Deep bed filtration[J]. Journal of Petroleum Science & Engineering, 2009, 69(1-2): 71-88.
    [8] QIAN F P, HUANG N J, LU J L, et al. CFD-DEM simulation of the filtration performance for fibrous media based on the mimic structure[J]. Computers & Chemical Engineering, 2014, 71: 478-488.
    [9] YUE C, ZHANG Q, ZHAI Z. Numerical simulation of the filtration process in fibrous filters using CFD-DEM method[J]. Journal of Aerosol Science, 2016, 101: 174-187. doi: 10.1016/j.jaerosci.2016.08.004
    [10] 肖桐, 王千红, 沈盈莺, 等. 颗粒床内固液过滤的三维CFD-DEM模拟[J]. 华东理工大学学报(自然科学版), 2020, 46(2): 164-172.
    [11] WANG F L, HE Y L, TANG S Z, et al. Real-time particle filtration of granular filters for hot gas clean-up[J]. Fuel, 2019, 237: 308-319. doi: 10.1016/j.fuel.2018.09.138
    [12] YANG G H, ZHOU J H. Experimental study on a new dual-layer granular bed filter for removing particulates[J]. Journal of China University of Mining & Technology, 2007, 17(2): 201-204.
    [13] SHI K Y, YANG G H, HANG S, et al. Study on filtering characteristics of aerosol particulates in a powder-grain dual-layer granular bed[J]. Powder Technology, 2015, 272: 54-63. doi: 10.1016/j.powtec.2014.11.034
    [14] TIEN C. Principles of Filtration[M]. Holand: Elsevier, 2012.
    [15] 景有海. 均质滤料过滤过程的水头损失计算模型[J]. 中国给水排水, 2000, 16(2): 9-12. doi: 10.3321/j.issn:1000-4602.2000.02.003
    [16] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [17] MENTER F R, KUNTZ M, LANGTRY R B. Ten years of industrial experience with the SST turbulence model[J]. Turbulence Heat Mass Transfer, 2003, 4: 625-632.
    [18] MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16: 259-268. doi: 10.1115/1.4009973
    [19] MARSHALL J S. Discrete-element modeling of particulate aerosol flows[J]. Journal of Computational Physics, 2009, 228(5): 1541-1561. doi: 10.1016/j.jcp.2008.10.035
    [20] ERGUN S. Fluid flow through packed columns[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89-94.
    [21] KUO Y M, HUANG S H, LIN W Y, et al. Filtration and loading characteristics of granular bed filters[J]. Journal of Aerosol Science, 2010, 41(2): 223-229. doi: 10.1016/j.jaerosci.2009.09.011
    [22] IVES K J. Rapid filtration[J]. Water Research, 1970, 4(3): 201-223. doi: 10.1016/0043-1354(70)90068-0
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  45
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 网络出版日期:  2021-07-13

目录

    /

    返回文章
    返回