高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

亚胺还原酶的改造及其催化合成1-苯基-1,2,3,4-四氢异喹啉的性能

曹文斌 李昊 陈飞飞 潘江 郑高伟 许建和

曹文斌, 李昊, 陈飞飞, 潘江, 郑高伟, 许建和. 亚胺还原酶的改造及其催化合成1-苯基-1,2,3,4-四氢异喹啉的性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210505001
引用本文: 曹文斌, 李昊, 陈飞飞, 潘江, 郑高伟, 许建和. 亚胺还原酶的改造及其催化合成1-苯基-1,2,3,4-四氢异喹啉的性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210505001
CAO Wenbin, LI Hao, CHEN Feifei, PAN Jiang, ZHENG Gaowei, XU Jianhe. Molecular Engineering and Characterization of Imine Reductases for the Synthesis of 1-Phenyl-1,2,3,4-tetrahydro-isoquinoline[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210505001
Citation: CAO Wenbin, LI Hao, CHEN Feifei, PAN Jiang, ZHENG Gaowei, XU Jianhe. Molecular Engineering and Characterization of Imine Reductases for the Synthesis of 1-Phenyl-1,2,3,4-tetrahydro-isoquinoline[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210505001

亚胺还原酶的改造及其催化合成1-苯基-1,2,3,4-四氢异喹啉的性能

doi: 10.14135/j.cnki.1006-3080.20210505001
基金项目: 国家自然科学基金项目(21878085,21871085)
详细信息
    作者简介:

    曹文斌(1993-),男,硕士生,主要研究方向:生物催化。E-mail:494186758@qq.com

    通讯作者:

    许建和,E-mail:jianhexu@ecust.edu.cn

  • 中图分类号: Q81

Molecular Engineering and Characterization of Imine Reductases for the Synthesis of 1-Phenyl-1,2,3,4-tetrahydro-isoquinoline

  • 摘要: 对亚胺还原酶酶库的筛选获得了性能优良的AdIR1,基于蛋白结构分析对其进行分子改造获得催化效率更优的突变体酶F172Y,并对其进行动力学与热稳定性表征;最后利用所开发的突变酶实现了(S)-1-Ph-THIQ克级制备,证明了该酶法合成路线的实用性。

     

  • 图  1  亚胺还原酶催化的不对称还原反应

    Figure  1.  Asymmetric reduction by IRED.

    图  2  SnIR与AdIR1的结构比对结果

    Figure  2.  Results for structural alignment of AdIR1 with SnIR.

    图  3  pH对母本(A)与F172Y(B)酶活力的影响

    Figure  3.  Effect of pH on the activity of WT(A) and F172Y(B). Activity-pH data was measured using the following buffer: (i) citrate buffer (●, pH 3.0-6.0); (ii) potassium phosphate buffer (♦, pH 6.0-8.0); (iii) Tris-HCl buffer (▲, pH 8.0-9.0); (iv) Gly-NaOH buffer (■, pH 9.0-11.0). Relative activity was expressed as a percentage of the maximum activity.

    图  4  母本(a)与F172Y(b)突变体的热稳定性

    Figure  4.  Thermostability of WT (a) and F172Y (b)

    图  5  母本与突变体F172Y的动力学特征曲线

    Figure  5.  Kinetic characteristic curves of the wild type and F172Y of AdIR1

    图  6  母本(黄色)与突变体F172Y(绿色)的反应进程曲线

    Figure  6.  Reaction process curves of Wild Type (yellow) and F172Y (blue) of AdIR1. Conversion (◆); enantiomer excess (■).

    图  7  不同助溶剂浓度下的反应进程曲线

    Figure  7.  Reaction process curves with different cosolvent concentrations.

    图  8  克级制备反应的反应进程曲线

    Figure  8.  Reaction process curve of gram-scale preparative reaction.

    表  1  目的基因克隆所用的引物

    Table  1.   Primers used in gene cloning.

    EntryEnzymePrimers (5’ to 3’)Restriction site
    1AdIR1GGAATTCCATATGATCACACTGATCGGGCTCGGT
    CCGGAATTCCTACTTGCGGTCCGCCTTGATG
    Nde I
    EcoR I
    2SeIR2GGGAATTCCATATGAGCACGCCGCTGACGCTGAT
    CCGGAATTCCTACTTCGCGGGCTTGATC
    Nde I
    EcoR I
    下载: 导出CSV

    表  2  目的基因定点突变所用PCR引物

    Table  2.   Primers used for site-directed mutagenesis.

    EntryNamePrimers (5’ to 3’)Length
    1118_FPGGCGTGATGNDTCCTGCCGAGTTGGTGGGCAAGGAG36
    2118_RPCTCGGCAGGAHNCATCACGCCGCCCGCGACGAACCG36
    3172_FPCTGGACATCNDTCTGACCTCGCTTTCGGTGTTCATG36
    4172_RPCGAGGTCAGAHNGATGTCCAGCTGCGCCTGGTAGAA36
    5216_FPGCCGAGCAGNDTGAAAAGGGCGAGCACCCCGGCGAC36
    6216_RPGCCCTTTTCAHNCTGCTCGGCCGCGGCGTCCAGGTA36
    下载: 导出CSV

    表  3  亚胺还原酶不对称还原1-苯基-3,4-二氢异喹啉的结果

    Table  3.   Asymmetric reduction of 1-phenyl-3,4-dihydroisoquinoline by AdIR1and SeIR2.

    EntryEnzymeTime/hC/%ee/%
    1AdIR1249898 (S)
    2SeIR2245494 (S)
    下载: 导出CSV

    表  4  亚胺还原酶的关键位点比对结果

    Table  4.   Alignment of key residues of the imine reductases.

    EntryEnzyme1st site2nd site3rd site
    1SnIRT123F178G228
    2AdIR1V118F172I216
    下载: 导出CSV

    表  5  AdIR1突变体的测活结果

    Table  5.   Activity assay results of AdIR1 mutants.

    EntryEnzymeMutation siteSpecific activity/(mU·mg−1)Fold
    1WT7.901.0
    2M11188.811.1
    3M21185.920.7
    4M31188.881.2
    5M417215.31.9
    下载: 导出CSV

    表  6  突变体F172Y与母本的半衰期对比

    Table  6.   The half-lives of WT and F172Y at different temperatures.

    Enzymet1/2/h
    30 ℃40 ℃50 ℃
    WT70.050.41.0
    F172Y324.0314.03.9
    下载: 导出CSV

    表  7  母本与F172Y的催化动力学参数

    Table  7.   Kinetic parameters of WT and F172Y.

    EnzymeTemperature/
    (℃)
    Km/
    (mmol/L)
    kcat/ (s−1)kcat/Km/
    (s−1·mmol/L−1)
    WT300.05 ± 0.010.005 ± 0.0000.10
    F172Y300.05 ± 0.010.017 ± 0.0000.34
    F172Y400.07 ± 0.010.027 ± 0.0000.38
    下载: 导出CSV

    表  8  亚胺还原酶突变体F172Y在30 ℃与40 ℃下的反应转化结果

    Table  8.   Reaction conversion of F172Y under 30 and 40 ℃.

    T/(℃)Time/hConversion/ (%)ee/(%)
    3066999
    128499
    4068499
    129199
    下载: 导出CSV
  • [1] PEREZ M, WU Z, SCALONE M. Enantioselective synthesis of 1-aryl-substituted tetrahydroisoquinolines through Ru-catalyzed asymmetric transfer hydrogenation[J]. European Journal of Organic Chemistry, 2015(29): 6503-6514.
    [2] SINGH I P, SHAH P. Tetrahydroisoquilines in therapeutics: A patent review[J]. Expert Opinion on Therapeutic Patents, 2017, 27(1): 17-36. doi: 10.1080/13543776.2017.1236084
    [3] PERREY D A, GERMAN N A, GILMOUR B P, et al. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor[J]. Journal of Medicinal Chemistry, 2013, 56(17): 6901-6916. doi: 10.1021/jm400720h
    [4] AZUKIZAWA S, KASAI M, TAKAHASHI K, et al. Synthesis and biological evaluation of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids: a novel series of PPARγ agonists[J]. Chemical and Pharmaceutical Bulletin, 2008, 56(3): 335-345. doi: 10.1248/cpb.56.335
    [5] BEMBENEK M E, ABELL C W, CHRISEY L A, et al. Inhibition of monoamine oxidases A and B by simple isoquinoline alkaloids: racemic and optically active 1,2,3,4-tetrahydro-, 3,4-dihydro-, and fully aromatic isoquinolines[J]. Journal of Medicinal Chemistry, 1990, 33: 147-152. doi: 10.1021/jm00163a025
    [6] MINAMI M, TAKAHASHI T, MARUYAMA W, et al. Inhibition of tyrosine hydroxylase by R and S enantiomers of Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline[J]. Journal of Neurochemistry, 1992, 58(6): 2097-2101. doi: 10.1111/j.1471-4159.1992.tb10951.x
    [7] SAITOH T, ABE K, ISHIKAWA M, et al. Synthesis and in vitro cytotoxicity of 1,2,3,4-tetrahydroisoquinoline derivatives[J]. European Journal of Medicinal Chemistry, 2006, 41(2): 241-252. doi: 10.1016/j.ejmech.2005.11.003
    [8] ABRAMS P, ANDERSSON K-E. Muscarinic receptor antagonists for overactive bladder[J]. BJU International, 2007, 100(5): 987-1006. doi: 10.1111/j.1464-410X.2007.07205.x
    [9] GROGAN G, TURNER N J. InspIRED by nature: NADPH-dependent imine reductases (IREDs) as catalysts for the preparation of chiral amines[J]. Chemistry - A European Journal, 2016, 22(6): 1900-1907. doi: 10.1002/chem.201503954
    [10] PATIL M D, GROGAN G, BOMMARIUS A, et al. Oxidoreductase-catalyzed synthesis of chiral amines[J]. ACS Catalysis, 2018, 8(12): 10985-11015. doi: 10.1021/acscatal.8b02924
    [11] LI H, TIAN P, XU J-H, et al. Identification of an imine reductase for asymmetric reduction of bulky dihydroisoquinolines[J]. Organic Letters, 2017, 19(12): 3151-3154. doi: 10.1021/acs.orglett.7b01274
    [12] ZHU J, TAN H, YANG L, et al. Enantioselective synthesis of 1-aryl-substituted tetrahydroisoquinolines employing imine reductase[J]. ACS Catalysis, 2017, 7(10): 7003-7007. doi: 10.1021/acscatal.7b02628
    [13] LI H, LUAN Z-J, ZHENG G-W, et al. Efficient Synthesis of chiral indolines using an imine reductase from Paenibacillus lactis[J]. Advanced Synthesis & Catalysis, 2015, 357(8): 1692-1696.
    [14] WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Research, 2018, 46(W1): W296-W303. doi: 10.1093/nar/gky427
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  25
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-05
  • 网络出版日期:  2021-07-13

目录

    /

    返回文章
    返回