高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

负载铜纳米簇的硅基杂化胶束制备及其化学动力学治疗

孙奇奇 李永生 牛德超

孙奇奇, 李永生, 牛德超. 负载铜纳米簇的硅基杂化胶束制备及其化学动力学治疗[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210425004
引用本文: 孙奇奇, 李永生, 牛德超. 负载铜纳米簇的硅基杂化胶束制备及其化学动力学治疗[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210425004
SUN Qiqi, LI Yongsheng, NIU Dechao. Preparation and Chemodynamic Therapy of Copper Nanoclusters-Loaded Silicon-Based Hybrid Micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210425004
Citation: SUN Qiqi, LI Yongsheng, NIU Dechao. Preparation and Chemodynamic Therapy of Copper Nanoclusters-Loaded Silicon-Based Hybrid Micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210425004

负载铜纳米簇的硅基杂化胶束制备及其化学动力学治疗

doi: 10.14135/j.cnki.1006-3080.20210425004
基金项目: 国家自然科学基金(52072124);上海市东方学者资助计划
详细信息
    作者简介:

    孙奇奇(1995-),男,山东临沂人,硕士生,主要研究方向为纳米生物材料。E-mail:qqsunlight7@163.com

    通讯作者:

    牛德超,E-mail:dcniu@ecust.edu.cn

  • 中图分类号: TB33

Preparation and Chemodynamic Therapy of Copper Nanoclusters-Loaded Silicon-Based Hybrid Micelles

  • 摘要: 本文利用3-巯基丙基三甲氧基硅烷(MPTMS)的水解缩聚对两亲性嵌段共聚物聚苯乙烯-b-聚丙烯酸(PS-b-PAA)胶束壳层进行固定,得到巯基改性的有机硅胶束。进一步利用巯基与铜离子的配位作用,通过一种原位还原策略制备得到了铜纳米簇负载的有机硅胶束。利用透射电镜、动态光散射、X射线光电子能谱、拉曼光谱等表征方法对纳米粒子的形貌和结构进行分析,模拟生理条件检测其稳定性,通过亚甲基蓝(MB)降解实验探究其生成羟基自由基(•OH)的能力,同时利用细胞毒性实验探究其生物安全性和对肿瘤细胞的杀伤作用。结果表明,该功能胶束体系具有pH响应和谷胱甘肽(GSH)消耗特性,可有效催化H2O2生成高细胞毒性的•OH,从而可作为一类新型纳米芬顿试剂用于肿瘤安全有效治疗。

     

  • 图  1  Cu-POMs的制备示意图

    Figure  1.  Schematic illustration of Cu-POMs

    图  2  (a)~(c)Cu-POMs的透射电镜照片及其得到的(d)粒径分布直方图;(e)POMs和Cu-POMs的Zeta电位及DLS

    Figure  2.  (a)~(c) TEM images of Cu-POMs and (d) the histogram of particle size distribution obtained from them; (e) Zeta potential and DLS of POMs and Cu-POMs.

    图  3  (a)POMs和Cu-POMs的XRD谱图;(b)PMs,POMs和Cu-POMs的拉曼光谱图

    Figure  3.  (a) XRD patterns of POMs and Cu-POMs; (b) Raman spectra of PMs,POMs and Cu-POMs.

    图  4  Cu-POMs的(a)EDS谱图和(b)XPS Cu 2p局部选区谱图

    Figure  4.  (a) X-ray energy dispersive spectroscopy (EDS) and (b) local X-ray photoelectron spectroscopy (XPS) spectrum section of the Cu 2p region of Cu-POMs.

    图  5  Cu-POMs的高分辨TEM图像及其元素扫描分布

    Figure  5.  High-resolution TEM image of Cu-POMs and the corresponding element mapping

    图  6  Cu-POMs在不同介质(pH 7.4 的PBS以及含10%血清的RPMI-1640培养基)中随时间变化的水合动力学粒径(嵌入:数码照片)

    Figure  6.  Hydrodynamic sizes of Cu-POMs stored in PBS (pH 7.4) and RPMI-1640 medium (10% serum included) for 120 h. Insert: the digital photograph.

    图  7  Cu-POMs在不同pH值(7.4,6.5和5.0)的缓冲液中不同时间点(0,1,2,4,8,12,24和48 h)铜离子的释放

    Figure  7.  Cu ions release of Cu-POMs after coincubation with buffers with various pH values (7.4, 6.5 and 5.0) at different time points (0, 1, 2, 4, 8, 12, 24 and 48 h)

    图  8  MB与Cu-POMs([Cu] = 50 μg/mL)+H2O2(100 μmol/L)在不同pH条件下反应后的(a)时间-降解曲线和(b)紫外-可见光吸收光谱

    Figure  8.  (a) The degradation-time curves and (b) UV-vis spectra of MB treated with Cu-POMs ([Cu] = 50 μg/mL), and H2O2 (100 μmol/L) under different pH conditions

    图  9  MB与Cu-POMs([Cu] = 50 μg/mL)+H2O2(100 μmol/L)在pH 6.5和不同浓度的谷胱甘肽(GSH)的条件下反应后的(a)时间-降解曲线和(b)紫外-可见光吸收光谱

    Figure  9.  (a) Degradation-time curves and (b) UV-vis spectra of MB treated with Cu-POMs ([Cu] = 50 μg/mL), and H2O2 (100 μmol/L) at pH 6.5 under different concentration of GSH conditions

    图  10  MB与Cu-POMs (c(Cu) = 50 μg/mL)加不同浓度的双氧水在pH 6.5条件下反应后的(a)时间-降解曲线和(b)紫外-可见光吸收光谱

    Figure  10.  (a) The degradation-time curves and (b) UV-vis spectra of MB treated with Cu-POMs (c(Cu) = 50 μg/mL), and different concentration of H2O2 at pH 6.5

    图  11  SMMC-7721细胞与不同浓度的H2O2孵育24 h后的细胞存活率

    Figure  11.  Relative cell viabilities of SMMC-7721 cells after 24 h incubation with various concentrations of H2O2

    图  12  (a)SMMC-7721细胞和(b)NIH-3T3细胞与不同浓度的POMs或Cu-POMs孵育24 h后的细胞存活率

    Figure  12.  Cell viabilities of (a) SMMC-7721 cells and (b) NIH-3T3 cells after 24 h incubation with POMs or Cu-POMs at various particle concentrations. Data were presented as mean ± SD (n=5, *p<0.05, ***p<0.001)

    图  13  与不同样品共孵育24 h并通过Annexin-V/PI试剂染色后的SMMC-7721细胞的流式细胞术分析结果

    Figure  13.  Flow cytometry analysis of SMMC-7721 cells after 24 h incubation with different samples and staining by Annexin-V/PI reagents.

  • [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 0: 1-41.
    [2] SONG G, CHENG L, CHAO Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Advanced Materials, 2017, 29(32): 1700996. doi: 10.1002/adma.201700996
    [3] PAN L, LIU J, HE Q, et al. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles[J]. Biomaterials, 2013, 34(11): 2719-2730. doi: 10.1016/j.biomaterials.2012.12.040
    [4] KAYL A, MEYERS C. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients[J]. Current Opinion in Obstetrics and Gynecology, 2006, 18(1): 24-28. doi: 10.1097/01.gco.0000192996.20040.24
    [5] TANG Z, LIU Y, HE M, et al. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions[J]. Angewandte Chemie International Edition, 2019, 58(4): 946-956. doi: 10.1002/anie.201805664
    [6] FU L, WAN Y, QI C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J]. Advanced Materials, 2021, 33(7): 2006892. doi: 10.1002/adma.202006892
    [7] LI W, WANG S, REN C, et al. Exo/endogenous dual-augmented chemodynamic therapy based on bio-reducible and bio-breakable copper (Ⅱ)-based truncated octahedron[J]. Chemical Engineering Journal, 2020, 396: 125280. doi: 10.1016/j.cej.2020.125280
    [8] YE H, ZHOU Y, LIU X, et al. Recent advances on reactive oxygen species-responsive delivery and diagnosis system[J]. Biomacromolecules, 2019, 20(7): 2441-2463. doi: 10.1021/acs.biomac.9b00628
    [9] ZHAO H, WANG Y, WANG Y, et al. Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism[J]. Applied Catalysis B: Environmental, 2012, 125: 120-127. doi: 10.1016/j.apcatb.2012.05.044
    [10] HAO Y, ZHANG W, GAO Y, et al. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy[J]. Journal of Materials Chemistry B, 2021, 9(2): 250-266. doi: 10.1039/D0TB02360D
    [11] ZHNG L, WAN S, LI C, et al. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe (iii)/Fe (ii) conversion[J]. Nano letters, 2018, 18(12): 7609-7618. doi: 10.1021/acs.nanolett.8b03178
    [12] MASOMBOON N, RATANATAMSKUL C, LU M. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process[J]. Environmental Science & Technology, 2009, 43(22): 8629-8634.
    [13] LIU Y, WU J, JIN Y, et al. Copper (I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor[J]. Advanced Functional Materials, 2019, 29(50): 1904678. doi: 10.1002/adfm.201904678
    [14] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nature Materials, 2013, 12(11): 991-1003. doi: 10.1038/nmat3776
    [15] MO R, GU Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery[J]. Materials Today, 2016, 19(5): 274-283. doi: 10.1016/j.mattod.2015.11.025
    [16] RANJI-BURACHALOO H, GURR P, DUNSTAN D, et al. Cancer treatment through nanoparticle-facilitated fenton reaction[J]. ACS Nano, 2018, 12(12): 11819-11837. doi: 10.1021/acsnano.8b07635
    [17] KUO Y, ZHOU B, COSCO D, et al. The copper transporter CTR1 provides an essential function in mammalian embryonic development[J]. Proceedings of the National Academy of Sciences, 2001, 98(12): 6836-6841. doi: 10.1073/pnas.111057298
    [18] SOLTANI T, LEE B. Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol[J]. Chemical Engineering Journal, 2017, 313: 1258-1268. doi: 10.1016/j.cej.2016.11.016
    [19] BRILLAS E, BANOS M, CAMPS S, et al. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode[J]. New Journal of Chemistry, 2004, 28(2): 314-322. doi: 10.1039/B312445B
    [20] MA B, WANG S, LIU F, et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy[J]. Journal of the American Chemical Society, 2018, 141(2): 849-857.
    [21] TURO M, MACDONALD J. Crystal-bound vs surface-bound thiols on nanocrystals[J]. ACS Nano, 2014, 8(10): 10205-10213. doi: 10.1021/nn5032164
    [22] LIU X, WANG B, LV X, et al. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles[J]. Journal of Hazardous Materials, 2021, 405: 124271. doi: 10.1016/j.jhazmat.2020.124271
  • 加载中
图(13)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  46
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 网络出版日期:  2021-07-01

目录

    /

    返回文章
    返回