Establishment of a High-Throughput Screening Method for Rhizomucor miehei Lipase Production by A. oryzae
-
摘要: 为了快速、高效地筛选出高产米黑根毛霉脂肪酶(RML)的米曲霉菌株,利用常温常压等离子体诱变技术(ARTP)对米曲霉孢子进行诱变,优化了高通量检测RML酶活的双指示剂法,建立了24孔板米曲霉高通量培养体系。通过对诱变后的1200孔(36000~48000个孢子)进行高通量筛选,最终筛选出4株米曲霉高产突变株。经由摇瓶验证,突变株Ⅰ7-D6-7、Ⅱ4-4B-5、Ⅲ3-5C-1、Ⅴ7-6C-3酶活分别达到了265.98、240.90、253.52、293.50 U/mL,比出发菌株的酶活(176.52 U/mL)分别提高了50.68%、36.47%、43.61%、66.27%。Abstract: In order to quickly and efficiently screen out Aspergillus oryzae strains of high-yielding Rhizomucor miehei lipase (RML), the spores of Aspergillus oryzae (A. oryzae) were mutated by atmospheric room temperature plasma (ARTP) mutagenesis technology. The dual indicator method for high-throughput detection of RML enzyme activity was optimized, and a 24-well plate high-throughput culture system of A. oryzae was established.Through high-throughput screening of 1,200 wells (36,000-48,000 spores) after mutagenesis, 4 high-yielding mutants, which was designated Ⅰ 7-D6-7, Ⅱ 4-4B-5, Ⅲ 3-5C-1 and Ⅴ 7-6C-3, were finally obtained. In shake flask cultures, the enzyme activities of mutants reached 265.98, 240.90, 253.52 U/mL and 293.50 U/mL, which was increased by 50.68%, 36.47%, 43.61% and 66.27%, respectively, compared to the original strain (176.52 U/mL) .
-
图 3 不同计算方式下标准曲线的差异:(a)利用反应15 min后的吸光度绘制;(b)利用预热5 min后与反应15 min后的吸光度差值绘制
Figure 3. Difference of standard curve under different calculation methods: (a) The standard curve drawn by absorbance after reaction for 15 min; (b) The standard curve drawn by absorbance difference between preheating 5 min and reaction 15 min
表 1 双指示剂法与p-NPP法测量一致性的比较
Table 1. Comparison of double indicator method and p-NPP method on measuring consistency
Strain Enzyme activity/ (U·mL−1) p-NPP method Double indicator method Ⅲ3-5C-1 31.58±7.36 46.88±7.49 Ⅰ7-D6--7 29.36±0.99 42.08±10.89 Ⅱ4-4B-5 35.10±3.25 54.03±5.54 V7-6C-3 30.04±2.25 40.63±6.37 Original strain 23.81±1.78 37.47±5.02 -
[1] TURKENBURG J P, CHRISTIANSEN L, HUGE-JENSEN B, et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature, 1990, 343(6260): 767-770. doi: 10.1038/343767a0 [2] PALLA CA, PACHECO C, CARRIN M E. Production of structured lipids by acidolysis with immobilized Rhizomucor miehei lipases: Selection of suitable reaction conditions[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 76: 106-115. [3] DIEGO T D, LOZANO P, ABAD M A, et al. On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis[J]. Journal of Biotechnology, 2009, 140(3/4): 234-241. doi: 10.1016/j.jbiotec.2009.01.012 [4] HUANG J, XIA J, YANG Z, et al. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel[J]. Biotechnology for Biofuels, 2014, 7(1): 111-121. doi: 10.1186/1754-6834-7-111 [5] GUMEL A, ANNUAR M, HEIDELBERG T, et al. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate[J]. Bioresource Technology, 2011, 102(19): 8727-8732. doi: 10.1016/j.biortech.2011.07.024 [6] GOFFERJE G, STABLER A, HERFELLNER T. Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei[J]. Journal of Molecular Catalysis B Enzymatic, 2014, 107: 1-7. doi: 10.1016/j.molcatb.2014.05.010 [7] YILDIRIM D, BARAN E, ATES S, et al. Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters[J]. Biocatalysis and Biotransformation, 2019, 37(3): 210-223. [8] 张智敏, 庄淼, 金锋杰. 米曲霉基因工程技术的进展[J]. 生物技术通报, 2018, 34(9): 170-176. [9] 周剑, 江红, 林风. 基于深孔板培养高通量筛选rakicidin B1高产菌的研究[J]. 中国抗生素杂志, 2019, 44(12): 1352-1355. doi: 10.3969/j.issn.1001-8689.2019.12.007 [10] 曹晓梅. 阿维菌素高产菌株的定向选育[D]. 江苏无锡: 江南大学, 2018. [11] 张幸子, 王晓惠, 王泽建, 等. 等离子体作用结合氧限制模型选育辅酶Q10高产菌株[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 308-315. [12] 郑建丰, 邬敏辰. 碱性脂肪酶测定方法的研究[J]. 江苏食品与发酵, 1996(4): 8-11. [13] VORDEWULBECKE T, KIESLICH K, ERDNANN H. Comparison of lipases by different assays[J]. Enzyme & Microbial Technology, 1992, 14(8): 631-639. [14] DUNCOMBE W G. The colorimetric determination of long chain fatty acids[J]. Biochemical Journal, 1963, 88(1): 7-10. [15] 郑毅, 叶海梅, 周虓, 等. 脂肪酶活力测定研究进展[J]. 工业微生物, 2005(4): 36-40. doi: 10.3969/j.issn.1001-6678.2005.04.009 [16] WANG D, WANG J, WANG B, et al. A new and efficient colorimetric high-throughput screening method for triacylglycerol lipase directed evolution[J]. Journal of Molecular Catalysis B Enzymatic, 2012, 82: 18-23. doi: 10.1016/j.molcatb.2012.05.021 [17] 李英英. 头孢菌素C高产菌株高通量筛选及低场核磁在发酵过程中油含量检测的应用[D]. 上海: 华东理工大学, 2017. [18] 周其洋, 张书泰. ARTP诱变技术选育高产谷氨酰胺酶的曲霉菌种[J]. 中国调味品, 2019, 44(11): 137-140. doi: 10.3969/j.issn.1000-9973.2019.11.032 [19] 舒冬梅, 王德良, 宋绪磊, 等. 常压室温等离子体诱变(ARTP)及高通量筛选高产蛋白酶米曲霉的初探[J]. 中国调味品, 2016, 41(12): 67-73. doi: 10.3969/j.issn.1000-9973.2016.12.014 [20] 李鹏, 张艳芳, 王军, 等. 紫外诱变选育米曲霉氨肽酶高产菌株[J]. 中国调味品, 2017, 42(1): 61-64. doi: 10.3969/j.issn.1000-9973.2017.01.014 [21] 王斌, 潘力, 郭勇. 丝状真菌米曲霉外源基因表达系统的构建[J]. 华南理工大学学报(自然科学版), 2009, 37(6): 84-90. -