PET-RAFT Polymerization Based on Recyclable Fluorinated Porphyrin Catalyst
-
摘要: 基于5,10,15,20-四(五氟苯基)卟啉(TPPF20)合成了一种非均相光催化剂TPPF20-TPA,该催化剂可在蓝光下对单体进行光致电子/能量转移-可逆加成-断裂链转移(PET-RAFT)聚合。该聚合体系可以调节单体的转化率和聚合物分子量,开关光源还可以控制反应进程,具有较好的单体适用性,并且生成的聚合物链末端具有较好的端基保留程度。TPPF20-TPA可以循环用于3个独立的聚合反应,单体转化率未显著降低。Abstract: A heterogeneous photocatalyst TPPF20-TPA based on 5, 10, 15, 20-tetrakis (pentafluorophenyl) porphyrin (TPPF20) was synthesized, which could be used in photo-induced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under the radiation of blue light (λmax = 425 nm). A series of polymers with defined molecular weights and low dispersion could be obtained through the PET-RAFT polymerization process. The monomer conversion rate and the polymer molecular weight were detected by 1H-NMR and GPC. Through these experiments, the reaction process of the catalyst was compared under different light sources,different monomer relative concentrations or different monomer conditions. The results showed that TPPF20-TPA could catalyze the polymerization of common monomers(MMA,GMA,BZMA), making the reaction process controllable, and its insolubility in common solvents (e.g. ethanol, dichloromethane, dimethyl sulfoxide) could be used for 3 independent PET-RAFT polymerizations reactions without significant reduction in polymerization efficiency.
-
Key words:
- fluorinated porphyrin /
- heterogeneous catalysis /
- PET-RAFT /
- photopolymerization /
- recyclable
-
表 1 在蓝光LED下,不同浓度TPPF20-TPA、不同单体对PET-RAFT聚合的影响
Table 1. Effects of different concentrations of TPPF20-TPA and different monomers on PET-RAFT polymerization under blue LED
Entry nM∶nCDB∶$n{_{\rm{TPPF}{_{20}}\text{-} {\rm{TPA}}}}$ Monomer α2)/% Mn,th Mn,GPC PDI3) 1 200∶1∶0 MMA − − − − 2 200∶0∶0.010 MMA 21.5 4572 175000 2.21 3 200∶1∶0.010 MMA 65.3 13332 19960 1.11 4 200∶1∶0.020 MMA 71.3 14532 18210 1.18 5 200∶1∶0.005 MMA 59.3 12132 12838 1.21 6 200∶1∶0.010 GMA 55.3 15977 16005 1.27 7 200∶1∶0.010 BZMA 53.1 18963 18462 1.21 1) M stands for monomer; 2) α is calculated from 1H-NMR; 3) PDI = Mw/Mn, determined by GPC -
[1] CHEN M, ZHONG M, JOHNSON J A. Light-controlled radical polymerization: Mechanisms, methods, and applications[J]. Chemical Reviews, 2016, 116(17): 10167-10173. [2] WALSH D J, HYATT M G, MILLER S A, et al. Recent trends in catalytic polymerizations[J]. ACS Catalysis, 2019, 9(12): 11153-11188. doi: 10.1021/acscatal.9b03226 [3] PAN X C, FANTIN M, YUAN F, et al. Externally controlled atom transfer radical polymerization[J]. Chemical Society Reviews, 2018, 47(14): 5457-5490. doi: 10.1039/C8CS00259B [4] MCKENZIE T G, FU Q, UCHIYAMA M, et al. Beyond traditional RAFT: Alternative activation of thiocarbonylthio compounds for controlled polymerization[J]. Advanced Science, 2016, 3(9): 1-9. [5] THERIOT J C, LIM C H, YANG H, et al. Organocatalyzed atom transfer radical polymerization driven by visible light[J]. Science, 2016, 352(6289): 1082-1086. doi: 10.1126/science.aaf3935 [6] BRAUNECKER W A, MATYJASZEWSKI K. Controlled/living radical polymerization: Features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32(1): 93-146. doi: 10.1016/j.progpolymsci.2006.11.002 [7] JING J J, GANG Y. Localized surface plasmon resonance meets controlled/living radical polymerization: An adaptable strategy for broadband light-regulated macromolecular synthesis[J]. Angewandte Chemie International Edition, 2019, 58(35): 12096-12101. doi: 10.1002/anie.201906194 [8] HAKOBYAN K, GEGENHUBER T, MCERLEAN C, et al. Visible-light-driven MADIX polymerisation via a reusable, low-cost, and non-toxic bismuth oxide photocatalyst[J]. Angewandte Chemie International Edition, 2019, 58(6): 1828-1832. doi: 10.1002/anie.201811721 [9] ZHU Y, LIU Y, MILLER K A, et al. Lead halide perovskite nanocrystals as photocatalysts for PET-RAFT polymerization under visible and near-infrared irradiation[J]. ACS Macro Letters, 2020, 9(5): 725-730. doi: 10.1021/acsmacrolett.0c00232 [10] JIANG J, GANG Y, ZHE W, et al. Heteroatom-doped carbon dots (CDs) as a new class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight[J]. Angewandte Chemie International Edition, 2018, 130(37): 12212-12218. [11] MCCLELLAND K P, CLEMONS T D, STUPP S I, et al. Semiconductor quantum dots are efficient and recyclable photocatalysts for aqueous PET-RAFT polymerization[J]. ACS Macro Letters, 2019, 9(1): 7-13. [12] BOYER C A J M, ZHANG L, SHI X, et al. Porphyrinic zirconium MOFs as heterogeneous photocatalysts for PET‐RAFT polymerization and stereolithography[J]. Angewandte Chemie International Edition, 2020, 60(10): 5489-5496. [13] LI X, ZHANG Y C, ZHAO Y, et al. Xanthene dye-functionalized conjugated porous polymers as robust and reusable photocatalysts for controlled radical polymerization[J]. Macromolecules, 2020, 53(5): 1550-1556. doi: 10.1021/acs.macromol.0c00106 [14] CAO H L, WANG G C, XUE Y D, et al. Far-red light-induced reversible addition–fragmentation chain transfer polymerization using a man-made bacteriochlorin[J]. ACS Macro Letters, 2019, 8(15): 616-622. [15] WANG W, ZHONG S, WANG G, et al. Photo-controlled RAFT polymerization mediated by organic/inorganic hybrid photoredox catalysts: Enhanced catalytic efficiency[J]. Polymer Chemistry, 2020, 11(18): 3188-3194. doi: 10.1039/D0PY00171F [16] 陈帅, 庞瑞淇, 刘思奕, 等. 卟啉半遥爪聚合物的制备及其在光动力疗法中的应用探讨[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 349-359. [17] 肖潮, 田佳, 刘峰, 等. 基于pH响应两亲性卟啉嵌段共聚物的光动力与化学联合治疗[J]. 华东理工大学学报(自然科学版), 2020, 46(2): 208-218. [18] SHEN L, LU Q, ZHU A, et al. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst[J]. ACS Macro Letters, 2017, 6(6): 625-631. doi: 10.1021/acsmacrolett.7b00343 [19] HUANG Y, LI X, LI J L, et al. An environmentally benign and pH-sensitive photocatalyst with surface-bound metalloporphyrin for heterogeneous catalysis of controlled radical polymerization[J]. Macromolecules, 2018, 51(20): 7974-7982. doi: 10.1021/acs.macromol.8b01735 [20] OBATA M, TANAKA S, MIZUKOSHI H, et al. RAFT synthesis of an amphiphilic block copolymer bearing chlorin rings in the hydrophobic segment and its application in photodynamic therapy[J]. Journal of Polymer Science: Part A. Polymer Chemistry, 2017, 55(20): 3395-3403. doi: 10.1002/pola.28716 [21] PENG C H, FRYD M, WAYLAND B B. Organocobalt mediated radical polymerization of acrylic acid in water[J]. Macromolecules, 2007, 40(19): 6814-6819. doi: 10.1021/ma070836n [22] BHUPATHIRAJU N, RIZVI W, BATTEAS J D, et al. Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics[J]. Organic & Biomolecular Chemistry, 2015, 14(2): 389-408. [23] BHUPATHIRAJU N, RIZVI W, BATTEAS J D, et al. ChemInform abstract: Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics[J]. ChemInform, 2016, 47(9): 389-395. [24] SINGH S, AGGARWAL A, BHUPATHIRAJU N, et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics[J]. Chemical Reviews, 2015, 115(18): 10261-10306. doi: 10.1021/acs.chemrev.5b00244 [25] WU M S, LIU Z Y, ZHANG W A. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy[J]. Chemical Science, 2021, 12(4): 1295-1301. doi: 10.1039/D0SC05525E -