高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于可回收含氟卟啉催化剂的PET-RAFT聚合研究

殷盼 王武龙 夏蕾 杲云 曹红亮

殷盼, 王武龙, 夏蕾, 杲云, 曹红亮. 基于可回收含氟卟啉催化剂的PET-RAFT聚合研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210410005
引用本文: 殷盼, 王武龙, 夏蕾, 杲云, 曹红亮. 基于可回收含氟卟啉催化剂的PET-RAFT聚合研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210410005
YIN Pan, WANG Wulong, XIA Lei, GAO Yun, CAO Hongliang. Study on PET-RAFT Polymerization Based on Recyclable Fluorin-containing Porphyrin Catalyst[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210410005
Citation: YIN Pan, WANG Wulong, XIA Lei, GAO Yun, CAO Hongliang. Study on PET-RAFT Polymerization Based on Recyclable Fluorin-containing Porphyrin Catalyst[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210410005

基于可回收含氟卟啉催化剂的PET-RAFT聚合研究

doi: 10.14135/j.cnki.1006-3080.20210410005
基金项目: 上海市自然科学基金(18ZR1408300)
详细信息
    作者简介:

    殷盼:殷 盼(1995-),男,江苏人,硕士生,主要研究方向:光控聚合。E-mail:785944896@QQ.com

    通讯作者:

    曹红亮,E-mail:caohl@ecust.edu.cn

  • 中图分类号: O69

Study on PET-RAFT Polymerization Based on Recyclable Fluorin-containing Porphyrin Catalyst

  • 摘要: 基于5,10,15,20-四(五氟苯基)卟啉(TPPF20)合成了一种非均相光催化剂TPPF20-TPA,该催化剂可在蓝光下对单体进行光致电子/能量转移-可逆加成-断裂链转移(PET-RAFT)聚合。该聚合体系可以调节单体的转化率和聚合物分子量,而且开关光源可以控制反应进程,具有较好的单体适用性,并且生成的聚合物链末端具有较好的端基保留程度。TPPF20-TPA可以循环用于3个独立的聚合反应,聚合效率未显著降低,显示出该催化剂在绿色化学中的潜力。

     

  • 图  1  TPPF20-TPA的合成路线

    Figure  1.  Synthesis method of TPPF20-TPA

    图  2  TPPF20(a)和中间产物(b)的1H-NMR;TPA, TPPF20和TPPF20-TPA的红外光谱(c);TPPF20-TPA、TPPF20和CDB的紫外吸收光谱(d)

    Figure  2.  1H-NMR of TPPF20 (a) and intermediate product (b); the FT-IR spectrum of CDB, TPPF20 and TPPF20-TPA (c); the UV-vis spectra of TPPF20-TPA and CDB(d)

    图  4  [MMA]∶[CDB]∶[TPPF20-TPA]=200∶1∶0.005(a),200∶1∶0.01(b),200∶1∶0.02(c)的不同时间的GPC曲线以及对应的Mn,thMn,GPC和PDI与单体转化率的关系(d)(e)(f)

    Figure  4.  [MMA]∶[CDB]∶[TPPF20-TPA]=200∶1∶0.005(a), 200:1:0.01(b), 200∶1∶0.02(c) GPC curves at different times and the corresponding Mn,thMn,GPC and PDI vs monomer conversion rate(d)(e)(f)

    图  3  不同浓度的TPPF20-TPA的MMA的RAFT聚合动力学   

    Figure  3.  RAFT polymerization kinetics of MMA with different concentrations of TPPF20-TPA

    图  5  开/关光源控制的聚合动力学([MMA]∶[CDB]∶[TPPF20-TPA]=200∶1∶0.01)

    Figure  5.  Polymerization kinetics controlled by on/off light source([MMA]∶[CDB]∶[TPPF20-TPA]=200∶1∶0.01)

    图  6  通过PMMA macro-CTA扩链得到的PMMA-b-BZMA的1H NMR(a)、GPC曲线(c)和PMMA-b-GMA的1H NMR(b)、GPC曲线(d)

    Figure  6.  1H-NMR spectrum (a) and GPC curve (c) of PMMA-b-BZMA and the 1H NMR spectrum (b) and GPC curve (d) of PMMA-b-GMA

    图  7  [MMA]:[CDB]:[TPPF20-TPA]=200:1:0.01的三次循环测试的GPC曲线(a),转化率和Mn,GPC(b)([MMA]:[CDB]:[TPPF20-TPA]=200:1:0.01)

    Figure  7.  GPC curve (a), conversion rate and Mn,GPC (b) of the three-cycle test([MMA]:[CDB]:[TPPF20-TPA]=200:1:0.01)

    表  1  在蓝光LED(λmax=425 nm)下,不同浓度TPPF20-TPA、不同单体对PET-RAFT聚合的影响

    Table  1.   Under blue LED, the effect of different concentrations of TPPF20-TPA and different monomers on PET-RAFT polymerization

    Entry[M]/[RAFT]/[Catalyst]MonomerRAFT agentConv.1(α%)Mn,th2Mn,GPC3PDI4
    1200∶1∶0MMACDB
    2200∶0∶0.01MMA21.545721750002.21
    3200∶1∶0.01MMACDB65.313332199601.11
    4200∶1∶0.02MMACDB71.314532182101.18
    5200∶1∶0.005MMACDB59.312132128381.21
    6200∶1∶0.01GMACDB55.315977160051.27
    7200∶1∶0.01BZMACDB53.118963184621.21
    [1] Yield (α%) is calculated from 1H NMR; [2] Mn,th is calculated by [M]0/[RAFT] × Mmonomer × α%; [3] Mn,GPC is determined by Gel Permeation Chromatography (GPC); [4] Polydispersities PDI = Mw/Mn is determined by GPC; [5] The catalyst used in the PET-RAFT system was TPPF20-TPA, and all polymerization were irradiated under blue light for 10 h.
    下载: 导出CSV
  • [1] CHEN M, ZHONG M, JOHNSON J A. Light-controlled radical polymerization: mechanisms, methods, and applications[J]. Chemical Reviews, 2016: 10167-10173.
    [2] WALSH D J, HYATT M G, MILLER S A, et al. Recent trends in catalytic polymerizations[J]. ACS Catalysis, 2019, 9(12): 11153-11188. doi: 10.1021/acscatal.9b03226
    [3] PAN X C, FANTIN M, YUAN F, et al. Externally controlled atom transfer radical polymerization[J]. Chemical Society Reviews, 2018, 47(14): 5457-5490. doi: 10.1039/C8CS00259B
    [4] MCKENZIE T G, FU Q, UCHIYAMA M, et al. Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization[J]. Advanced Science, 2016, 3(9): 1-9.
    [5] THERIOT J C, LIM C H, YANG H, et al. Organocatalyzed atom transfer radical polymerization driven by visible light[J]. Science, 2016, 352(6289): 1082-1086. doi: 10.1126/science.aaf3935
    [6] BRAUNECKER W A, MATYJASZEWSKI K. Controlled/living radical polymerization: features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32(1): 93-146. doi: 10.1016/j.progpolymsci.2006.11.002
    [7] JING J J, GANG Y. Localized surface plasmon resonance meets controlled/living radical polymerization: an adaptable strategy for broadband light‐regulated macromolecular synthesis[J]. Angewandte Chemie International Edition, 2019, 58(35): 12096-12101. doi: 10.1002/anie.201906194
    [8] HAKOBYAN K, GEGENHUBER T, MCERLEAN C, et al. Visible‐light‐driven madix polymerisation via a reusable, low‐cost, and non‐toxic bismuth oxide photocatalyst[J]. Angewandte Chemie International Edition, 2019, 58(6): 1828-1832. doi: 10.1002/anie.201811721
    [9] ZHU Y, LIU Y, MILLER K A, et al. Lead halide perovskite nanocrystals as photocatalysts for PET-RAFT polymerization under visible and near-infrared irradiation[J]. ACS Macro Letters, 2020, 9(5): 725-730. doi: 10.1021/acsmacrolett.0c00232
    [10] JIANG J, GANG Y, ZHE W, et al. Heteroatom-doped carbon dots (CDs) as a new class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight[J]. Angewandte Chemie International Edition, 2018, 130(37): 12212-12218.
    [11] Mcclelland K P, Clemons T D, Stupp S I, et al. Semiconductor quantum dots are efficient and recyclable photocatalysts for aqueous PET-RAFT polymerization[J]. ACS Macro Letters, 2019, 9(1): 7-13.
    [12] BOYER C A J M, ZHANG L, SHI X, et al. Porphyrinic zirconium MOFs as heterogeneous photocatalysts for PET‐RAFT polymerization and stereolithography[J]. Angewandte Chemie International Edition, 2020, 60(10): 5489-5496.
    [13] LI X, ZHANG Y C, ZHAO Y, et al. Xanthene dye-functionalized conjugated porous polymers as robust and reusable photocatalysts for controlled radical polymerization[J]. Macromolecules, 2020, 53(5): 1550-1556. doi: 10.1021/acs.macromol.0c00106
    [14] CAO H, WANG G, XUE Y, et al. Far-red light-induced reversible addition–fragmentation chain transfer polymerization using a man-made bacteriochlorin[J]. ACS Macro Letters, 2019, 8(15): 616-622.
    [15] WANG W, ZHONG S, WANG G, et al. Photo-controlled RAFT polymerization mediated by organic/inorganic hybrid photoredox catalysts: enhanced catalytic efficiency[J]. Polymer Chemistry, 2020, 11(18): 3188-3194. doi: 10.1039/D0PY00171F
    [16] 陈帅, 庞瑞淇, 刘思奕, 等. 卟啉半遥爪聚合物的制备及其在光动力疗法中的应用探讨[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 349-359.
    [17] 肖潮, 田佳, 刘峰, 等. 基于pH响应两亲性卟啉嵌段共聚物的光动力与化学联合治疗[J]. 华东理工大学学报(自然科学版), 2020, 46(2): 208-218.
    [18] SHEN L, LU Q, ZHU A, et al. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst[J]. ACS Macro Letters, 2017, 6(6): 625-631. doi: 10.1021/acsmacrolett.7b00343
    [19] HUANG Y, LI X, LI J L, et al. An environmentally benign and pH-sensitive photocatalyst with surface-bound metalloporphyrin for heterogeneous catalysis of controlled radical polymerization[J]. Macromolecules, 2018, 51(20): 7974-7982. doi: 10.1021/acs.macromol.8b01735
    [20] OBATA M, TANAKA S, MIZUKOSHI H, et al. RAFT synthesis of an amphiphilic block copolymer bearing chlorin rings in the hydrophobic segment and its application in photodynamic therapy[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(20): 3395-3403. doi: 10.1002/pola.28716
    [21] PENG C H, FRYD M, WAYLAND B B. Organocobalt mediated radical polymerization of acrylic acid in water[J]. Macromolecules, 2007, 40(19): 6814-6819. doi: 10.1021/ma070836n
    [22] BHUPATHIRAJU N, RIZVI W, BATTEAS J D, et al. Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics[J]. Organic & Biomolecular Chemistry, 2015, 14(2): 389-408.
    [23] BHUPATHIRAJU N, RIZVI W, BATTEAS J D, et al. ChemInform Abstract: Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics[J]. ChemInform, 2016, 47(9): 389-395.
    [24] SINGH S, AGGARWAL A, BHUPATHIRAJU N, et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics[J]. Chemical Reviews, 2015, 115(18): 10261-10306. doi: 10.1021/acs.chemrev.5b00244
    [25] WU M S, ZHIYONGLIU, WEIANZ. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy[J]. Chemical Science, 2021, 12(4): 1295-1301. doi: 10.1039/D0SC05525E
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  45
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 网络出版日期:  2021-07-09

目录

    /

    返回文章
    返回