高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

镍锰共掺杂钙钛矿纳米线用作荧光粉制备橙光发光二极管

曾凤 朱以华 李春忠 卫钢 Linda Varadi

曾凤, 朱以华, 李春忠, 卫钢, Linda Varadi. 镍锰共掺杂钙钛矿纳米线用作荧光粉制备橙光发光二极管[J]. 华东理工大学学报(自然科学版), 2022, 48(4): 485-493. doi: 10.14135/j.cnki.1006-3080.20210407008
引用本文: 曾凤, 朱以华, 李春忠, 卫钢, Linda Varadi. 镍锰共掺杂钙钛矿纳米线用作荧光粉制备橙光发光二极管[J]. 华东理工大学学报(自然科学版), 2022, 48(4): 485-493. doi: 10.14135/j.cnki.1006-3080.20210407008
ZENG Feng, ZHU Yihua, LI Chunzhong, WEI Gang, LINDA Varadi. Nickel-Manganese Co-Doped Perovskite Nanowires as Phosphors toward Light-Emitting Applications[J]. Journal of East China University of Science and Technology, 2022, 48(4): 485-493. doi: 10.14135/j.cnki.1006-3080.20210407008
Citation: ZENG Feng, ZHU Yihua, LI Chunzhong, WEI Gang, LINDA Varadi. Nickel-Manganese Co-Doped Perovskite Nanowires as Phosphors toward Light-Emitting Applications[J]. Journal of East China University of Science and Technology, 2022, 48(4): 485-493. doi: 10.14135/j.cnki.1006-3080.20210407008

镍锰共掺杂钙钛矿纳米线用作荧光粉制备橙光发光二极管

doi: 10.14135/j.cnki.1006-3080.20210407008
基金项目: 国家自然科学基金(21776092)
详细信息
    作者简介:

    曾凤:曾 凤(1994-),女,四川内江人,硕士生,主要研究方向为钙钛矿材料。E-mail:2857451208@qq.com

    通讯作者:

    朱以华,E-mail:yhzhu@ecust.edu.cn

    卫 钢,E-mail:gang.wei@csiro.au

  • 中图分类号: TB321

Nickel-Manganese Co-Doped Perovskite Nanowires as Phosphors toward Light-Emitting Applications

  • 摘要: 采用配体辅助再沉淀法,在锰掺杂钙钛矿(CsPbxMn1-x(Cl/Br)3)纳米晶(NCs)的前体溶液中加入氯化镍,发现相比于锰掺杂钙钛矿NCs,镍锰共掺杂钙钛矿NCs的Mn2+的荧光强度增加了约100%,且形貌由接近立方块(边长14 nm)转变为纳米线(宽度为2~3 nm)。这可归因于Ni2+的加入降低了(100)表面能,充分溶解的前体得到更多晶核从而诱导生长为钙钛矿纳米线(NWs)。NWs作为荧光粉与市售紫外芯片构建了简易发光二极管器件,其强而宽的橙色荧光发射证实了所制备的Cs(PbxMnyNi1-x-y)(Cl/Br)3纳米线在发光应用中的潜力。在锰掺杂零维网络钙钛矿(Cs4PbxMn1-x(Cl/Br)6)的基础上加入氯化镍,得到了镍锰共掺杂零维网络钙钛矿NWs,验证了钙钛矿NWs生长机理,为合成新型掺杂钙钛矿NWs提供了参考。

     

  • 图  1  Cs(PbxMnyNi1-x-y)(Cl/Br)3 NCs正己烷溶液的UV-Vis谱图(a)和Cs(PbxMnyNi1-x-y)(Cl/Br)3 NCs正己烷溶液的PL谱图(b)

    Figure  1.  UV-Vis spectra of Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanocrystals n-hexane solution (a) and photoluminescence spectra of Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanocrystals n-hexane solution (b)

    图  2  Cs(PbxMnyNi1-x-y)(Cl/Br)3 NCs 的TEM图

    Figure  2.  TEM image of Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanocrystals

    图  3  Cs(PbxMnyNi1-x-y)(Cl/Br)3 NCs 的XRD结果

    Figure  3.  XRD pattern of Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanocrystals

    图  4  NiCl2存在和不存在情况下制备的掺杂钙钛矿纳米晶体生长过程

    Figure  4.  Proposed growth process of nanocrystals obtained in the absence and presence of nickel chloride as a dopant

    图  5  室温下Cs(PbxMnyNi1-x-y)(Cl/Br)3 NCs的EPR波谱

    Figure  5.  EPR spectra of Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanocrystals at room-temperature

    图  6  钙钛矿薄膜的SEM-EDS分析

    Figure  6.  SEM-EDS analysis of the perovskite films

    图  7  Cs(PbxMnyNi1-x-y)(Cl/Br)3钙钛矿NWs LED色域坐标图(a);橙色LED器件的PL图(b)

    Figure  7.  Gamut coordinate chart of Cs(PbxMnyNi1-x-y)(Cl/Br)3 perovskite nanowires (a); Photoluminescence spectra of orange LED device (b)

    图  8  锰掺杂及镍锰共掺杂钙钛矿样品PL谱图

    Figure  8.  Photoluminesence spectra of manganese doped and nickel-manganese co-doped perovskite samples

    图  9  锰掺杂及镍锰共掺杂钙钛矿样品紫外-可见光谱图

    Figure  9.  UV-Vis spectra of manganese doped and nickel-manganese co-doped perovskite samples

    图  10  掺杂钙钛矿XRD图谱

    Figure  10.  XRD patterns of doped perovskite

    图  11  掺杂钙钛矿TEM图

    Figure  11.  TEM images of doped perovskite

    表  1  锰掺杂及镍锰共掺杂钙钛矿NCs粉末ICP-MS结果

    Table  1.   ICP-MS results of the mass fraction of manganese and nickel in manganese doped and nickel-manganese co-doped perovskite nanocrystals powder

    Sample$w_{ {\rm{Mn}^{2+} } }$/%$w_{ {\rm{Ni}^{2+} } } $/%
    Mn doped perovskite QDs0.0610
    Ni/Mn co-doped perovskite NWs0.0720.031 5
    下载: 导出CSV

    表  2  蒽和掺杂钙钛矿NCs的PL谱图积分面积

    Table  2.   PL spectrogram integral area of anthracene and doping perovskite nanocrystals

    SpectrumWavelength coverage/nmIntegral area
    StartEnd
    Anthracene n-hexane solution380700101791.2
    Mn doped perovskite QDs n-hexane solution380700111745.7
    Mn/Ni Co-doped perovskite NWs n-hexane solution380700171336.9
    n-Hexane3807003237.1
    Anthracene38070098554.1
    Mn doped perovskite QDs380700108508.6
    Mn/Ni Co-doped perovskite NWs380700168099.8
    下载: 导出CSV
  • [1] WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453. doi: 10.1021/acs.nanolett.5b04110
    [2] LI X, WU Y, ZHANG S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109
    [3] YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths[J]. Nano Letters, 2016, 16(8): 4838-4848. doi: 10.1021/acs.nanolett.6b01168
    [4] SEOK S ll, GRÄTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells[J]. Small, 2018, 14(20): 1704177. doi: 10.1002/smll.201704177
    [5] JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10(1): 1868. doi: 10.1038/s41467-019-09794-7
    [6] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Letters, 2015, 15(8): 5635-5640. doi: 10.1021/acs.nanolett.5b02404
    [7] KNOWLES K E, NELSON H D, KILBURN T B, et al. Singlet–triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons[J]. Journal of America Chemistry Society, 2015, 137(40): 13138-13147. doi: 10.1021/jacs.5b08547
    [8] DE A, MONDAL N, SAMANTA A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals[J]. Nanoscale, 2017, 9(43): 16722-16727. doi: 10.1039/C7NR06745C
    [9] MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl, Br, or I) perovskite nanocrystals for down-conversion emission[J]. Chemistry of Materials, 2018, 30(22): 8170-8178. doi: 10.1021/acs.chemmater.8b03066
    [10] XING K, YUAN X, WANG Y, et al. Improved doping and emission efficiencies of Mn-Doped CsPbCl3 perovskite nanocrystals via nickel chloride[J]. Journal of Physical Chemistry Letters, 2019, 10(15): 4177-4184. doi: 10.1021/acs.jpclett.9b01588
    [11] YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of America Chemistry Society, 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763
    [12] BI C H, WANG S X, KERSHAW S V, et al. Spontaneous self-assembly of cesium lead halide perovskite nanoplatelets into cuboid crystals with high intensity blue emission[J]. Advanced Science, 2019, 6(13): 1900462. doi: 10.1002/advs.201900462
    [13] GU L L, PODDAR S, FAN Z Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina[J]. Nature, 2020, 581: 278-282. doi: 10.1038/s41586-020-2285-x
    [14] VICKERS E T, GRAHAM T A, CHOWDHURY A H, et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands[J]. ACS Energy Letters, 2018, 3(12): 2931-2939. doi: 10.1021/acsenergylett.8b01754
    [15] GAO Y, ZHAO L Y, ZHANG Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy[J]. Advanced Materials, 2018, 30(31): 1801805. doi: 10.1002/adma.201801805
    [16] IM J H, LUO J S, FRANCKEVICǏUS M, et al. Nanowire perovskite solar cell[J]. Nano Letters, 2015, 15(3): 2120-2126. doi: 10.1021/acs.nanolett.5b00046
    [17] HUANG L, GAO Q G, SUN L D, et al. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance[J]. Advanced Materials, 2018, 30(27): 1800596. doi: 10.1002/adma.201800596
    [18] BI C H, HU J C, YAO Z W, et al. Self-assembled perovskite nanowire clusters for high luminance red light‐emitting diodes[J]. Advanced Functional Materials, 2020, 30(48): 2005990. doi: 10.1002/adfm.202005990
    [19] BAI D L, ZHANG J R, BIAN Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4): 970-978. doi: 10.1021/acsenergylett.8b00270
    [20] DUTTA S K, DUTTA A, SAMRAT D A, et al. Doping Mn2+ in single-crystalline layered perovskite microcrystals[J]. ACS Energy Letters, 2019, 4(1): 343-351. doi: 10.1021/acsenergylett.8b02349
    [21] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10(26): 1903659. doi: 10.1002/aenm.201903659
    [22] CHEN M, ZOU Y T, WU L Z, et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire[J]. Advanced Functional Materials, 2017, 27(23): 1701121. doi: 10.1002/adfm.201701121
    [23] ZHOU H, YUAN S P, WANG X X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section[J]. ACS Nano, 2017, 11(2): 1189-1195. doi: 10.1021/acsnano.6b07374
    [24] SUGIMOTO H, YAMAMURA M, FUJII R, et al. Donor-acceptor pair recombination in size-purified silicon quantum dots[J]. Nano Letters, 2018, 18(11): 7282-7288. doi: 10.1021/acs.nanolett.8b03489
    [25] LI D L, ZHANG M. Comparative method for determining fluorescence quantum yield[J]. Chinese Journal of Analytic Chemistry, 1988, 16(8): 732-734.
    [26] YANG X, PAN Z T, MA Y. Rhoda mine B as standard substance to measure the fluorescence-quantum yield of dichlorofluorescein[J]. Chinese Journal of Analytic Chemistry, 2003, 19(6): 588-589.
    [27] CAO M H, DAMJI Y, ZHANG C Y, et al. Low-dimensional-networked cesium lead halide perovskites: Properties, fabrication, and applications[J]. Small Methods, 2020, 4(12): 2000303. doi: 10.1002/smtd.202000303
    [28] AKKERMAN Q A, PARK S, RADICCHI E, et al. Nearly monodisperse insulator Cs4PbX6 (X=Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals[J]. Nano Letters, 2017, 17(3): 1924-1930. doi: 10.1021/acs.nanolett.6b05262
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  212
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回