Nickel-Manganese Co-Doped Perovskite Nanowires as Phosphors toward Light-Emitting Applications
-
摘要: 采用配体辅助再沉淀法,在锰掺杂钙钛矿(CsPbxMn1-x(Cl/Br)3)纳米晶(NCs)的前体溶液中加入氯化镍,发现相比于锰掺杂钙钛矿NCs,镍锰共掺杂钙钛矿NCs的Mn2+的荧光强度增加了约100%,且形貌由接近立方块(边长14 nm)转变为纳米线(宽度为2~3 nm)。这可归因于Ni2+的加入降低了(100)表面能,充分溶解的前体得到更多晶核从而诱导生长为钙钛矿纳米线(NWs)。NWs作为荧光粉与市售紫外芯片构建了简易发光二极管器件,其强而宽的橙色荧光发射证实了所制备的Cs(PbxMnyNi1-x-y)(Cl/Br)3纳米线在发光应用中的潜力。在锰掺杂零维网络钙钛矿(Cs4PbxMn1-x(Cl/Br)6)的基础上加入氯化镍,得到了镍锰共掺杂零维网络钙钛矿NWs,验证了钙钛矿NWs生长机理,为合成新型掺杂钙钛矿NWs提供了参考。Abstract: CsPbX3 perovskite semiconductor has received extensive research attention in the past decade due to its high light absorption coefficient, adjustable fluorescence emission in the visible light range, long carrier diffusion length and relatively good defect tolerance. It can be used as high-efficiency phosphors in electroluminescence quantum yield light-emitting devices. In order to obtain a wider range of fluorescence emission, the element composition and crystal arrangement of the perovskite nanocrystals can be adjusted by ion exchange or the introduction of guest transition metal ions into the host nanocrystals, which leads to the changes of the optical, electronic and magnetic properties of the host nanocrystal. Using the ligand-assisted reprecipitation method, nickel chloride was added to the precursor solution of manganese-doped perovskite (CsPbxMn1-x(Cl/Br)3) nanocrystals (NCs). It was found that compared with the manganese-doped perovskite NCs, the Mn2+ fluorescence intensity of the nickel-manganese co-doped perovskite NCs increased by about 100%, and the morphology changed from approximate cubic block (side length~14 nm) to nanowire (width 2~3 nm). This can be attributed to the fact that the addition of nickel ions reduces the (100) surface energy, and the fully dissolved precursor gets more crystal nuclei and thereby induces the growth of perovskite nanowires. Subsequently, nanowires were used as phosphors and commercially available UV chips to construct a simple light-emitting diode device. Its strong and broad orange fluorescence emission confirmed the potential performance of the prepared Cs(PbxMnyNi1-x-y)(Cl/Br)3 nanowires in light-emitting applications. Finally, nickel chloride was added to the manganese-doped zero-dimensional networked perovskite (Cs4PbxMn1-x(Cl/Br)6), and the nickel-manganese co-doped zero-dimensional networked perovskite nanowires verified the growth mechanism of the perovskite nanowires. All the results provide a reference for the synthesis of novel doped perovskite nanowires.
-
Key words:
- perovskite /
- nickel-manganese co-doping /
- nanowires /
- light-emitting diodes
-
表 1 锰掺杂及镍锰共掺杂钙钛矿NCs粉末ICP-MS结果
Table 1. ICP-MS results of the mass fraction of manganese and nickel in manganese doped and nickel-manganese co-doped perovskite nanocrystals powder
Sample $w_{ {\rm{Mn}^{2+} } }$/% $w_{ {\rm{Ni}^{2+} } } $/% Mn doped perovskite QDs 0.061 0 Ni/Mn co-doped perovskite NWs 0.072 0.031 5 表 2 蒽和掺杂钙钛矿NCs的PL谱图积分面积
Table 2. PL spectrogram integral area of anthracene and doping perovskite nanocrystals
Spectrum Wavelength coverage/nm Integral area Start End Anthracene n-hexane solution 380 700 101791.2 Mn doped perovskite QDs n-hexane solution 380 700 111745.7 Mn/Ni Co-doped perovskite NWs n-hexane solution 380 700 171336.9 n-Hexane 380 700 3237.1 Anthracene 380 700 98554.1 Mn doped perovskite QDs 380 700 108508.6 Mn/Ni Co-doped perovskite NWs 380 700 168099.8 -
[1] WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453. doi: 10.1021/acs.nanolett.5b04110 [2] LI X, WU Y, ZHANG S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109 [3] YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths[J]. Nano Letters, 2016, 16(8): 4838-4848. doi: 10.1021/acs.nanolett.6b01168 [4] SEOK S ll, GRÄTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells[J]. Small, 2018, 14(20): 1704177. doi: 10.1002/smll.201704177 [5] JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10(1): 1868. doi: 10.1038/s41467-019-09794-7 [6] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Letters, 2015, 15(8): 5635-5640. doi: 10.1021/acs.nanolett.5b02404 [7] KNOWLES K E, NELSON H D, KILBURN T B, et al. Singlet–triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons[J]. Journal of America Chemistry Society, 2015, 137(40): 13138-13147. doi: 10.1021/jacs.5b08547 [8] DE A, MONDAL N, SAMANTA A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals[J]. Nanoscale, 2017, 9(43): 16722-16727. doi: 10.1039/C7NR06745C [9] MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl, Br, or I) perovskite nanocrystals for down-conversion emission[J]. Chemistry of Materials, 2018, 30(22): 8170-8178. doi: 10.1021/acs.chemmater.8b03066 [10] XING K, YUAN X, WANG Y, et al. Improved doping and emission efficiencies of Mn-Doped CsPbCl3 perovskite nanocrystals via nickel chloride[J]. Journal of Physical Chemistry Letters, 2019, 10(15): 4177-4184. doi: 10.1021/acs.jpclett.9b01588 [11] YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of America Chemistry Society, 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763 [12] BI C H, WANG S X, KERSHAW S V, et al. Spontaneous self-assembly of cesium lead halide perovskite nanoplatelets into cuboid crystals with high intensity blue emission[J]. Advanced Science, 2019, 6(13): 1900462. doi: 10.1002/advs.201900462 [13] GU L L, PODDAR S, FAN Z Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina[J]. Nature, 2020, 581: 278-282. doi: 10.1038/s41586-020-2285-x [14] VICKERS E T, GRAHAM T A, CHOWDHURY A H, et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands[J]. ACS Energy Letters, 2018, 3(12): 2931-2939. doi: 10.1021/acsenergylett.8b01754 [15] GAO Y, ZHAO L Y, ZHANG Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy[J]. Advanced Materials, 2018, 30(31): 1801805. doi: 10.1002/adma.201801805 [16] IM J H, LUO J S, FRANCKEVICǏUS M, et al. Nanowire perovskite solar cell[J]. Nano Letters, 2015, 15(3): 2120-2126. doi: 10.1021/acs.nanolett.5b00046 [17] HUANG L, GAO Q G, SUN L D, et al. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance[J]. Advanced Materials, 2018, 30(27): 1800596. doi: 10.1002/adma.201800596 [18] BI C H, HU J C, YAO Z W, et al. Self-assembled perovskite nanowire clusters for high luminance red light‐emitting diodes[J]. Advanced Functional Materials, 2020, 30(48): 2005990. doi: 10.1002/adfm.202005990 [19] BAI D L, ZHANG J R, BIAN Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4): 970-978. doi: 10.1021/acsenergylett.8b00270 [20] DUTTA S K, DUTTA A, SAMRAT D A, et al. Doping Mn2+ in single-crystalline layered perovskite microcrystals[J]. ACS Energy Letters, 2019, 4(1): 343-351. doi: 10.1021/acsenergylett.8b02349 [21] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10(26): 1903659. doi: 10.1002/aenm.201903659 [22] CHEN M, ZOU Y T, WU L Z, et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire[J]. Advanced Functional Materials, 2017, 27(23): 1701121. doi: 10.1002/adfm.201701121 [23] ZHOU H, YUAN S P, WANG X X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section[J]. ACS Nano, 2017, 11(2): 1189-1195. doi: 10.1021/acsnano.6b07374 [24] SUGIMOTO H, YAMAMURA M, FUJII R, et al. Donor-acceptor pair recombination in size-purified silicon quantum dots[J]. Nano Letters, 2018, 18(11): 7282-7288. doi: 10.1021/acs.nanolett.8b03489 [25] LI D L, ZHANG M. Comparative method for determining fluorescence quantum yield[J]. Chinese Journal of Analytic Chemistry, 1988, 16(8): 732-734. [26] YANG X, PAN Z T, MA Y. Rhoda mine B as standard substance to measure the fluorescence-quantum yield of dichlorofluorescein[J]. Chinese Journal of Analytic Chemistry, 2003, 19(6): 588-589. [27] CAO M H, DAMJI Y, ZHANG C Y, et al. Low-dimensional-networked cesium lead halide perovskites: Properties, fabrication, and applications[J]. Small Methods, 2020, 4(12): 2000303. doi: 10.1002/smtd.202000303 [28] AKKERMAN Q A, PARK S, RADICCHI E, et al. Nearly monodisperse insulator Cs4PbX6 (X=Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals[J]. Nano Letters, 2017, 17(3): 1924-1930. doi: 10.1021/acs.nanolett.6b05262 -