Inclusion Behaviors of Benzyl-Containing Asymmetric Viologen with Cucurbit[8]uril
-
摘要: 研究芳环取代紫精分子与葫芦[8]脲(CB[8])的包结模式,对进一步构建相关超分子聚合物,甚至是刺激响应型材料具有重要意义。选取不对称的1-乙基-1’-苄基-4,4’-联吡啶溴化盐(EBV),通过核磁共振氢谱(1H-NMR)、等温滴定量热法(ITC)和高分辨质谱(HRMS)等手段,详细考察了EBV与CB[8]在水中的包结行为。研究结果表明,EBV的苄基单元会进入CB[8]内腔中,在经历1∶1(EBV与CB[8]的物质的量之比)包结后,最终形成1个CB[8]分子包结2个苄基的1∶2超分子体系。其中1∶1包结过程的结合常数为(1.65±1.22)×107 M−1(1 M=1 mol/L,下同),整个过程的表观包结常数为(1.34±0.193)×1013 M−2,对应的ΔH和−TΔS分别为(−64.4±3.19) kJ/mol和−9.43 kJ/mol,表明该主客体组装行为是由焓和熵共同驱动的。Abstract: Cucurbiturils (CB[n]s) is a hollow macrocyclic molecule formed by the condensation of glycoluril and formaldehyde under acidic conditions. The glycoluril units are linked together by methylene bridges, and the resulting cucurbiturils have hydrophobic cavity and polar carbonyl groups on both portals. Cucurbituril has strong inclusion ability for positively charged guest molecules such as protonated organic amines, pyridinium, and viologen. The study of the inclusion behaviors of aryl substituted viologen with cucurbit[8]uril urea (CB[8]) is of great significance for the further construction of related supramolecular polymers as well as stimulus responsive materials. In this work, asymmetric 1-ethyl-1'-benzyl-4,4'-bipyridine bromide (EBV) was used to investigate its inclusion behaviors with CB[8] in aqueous solution by means of 1H-NMR spectroscopy, isothermal titration calorimetry (ITC) and high resolution electrospray ionization mass spectrometry (ESI-HRMS). The results showed that the benzyl unit of EBV firstly occupied the cavity of CB[8] to form a 1∶1 inclusion complex, and a 1∶2 supramolecular system where one CB[8] molecule encircled two benzyl groups ultimately forms. The binding constant of the first 1∶1 inclusion process was (1.65±1.22)×107 M−1, and the corresponding ΔH1 and −TΔS1 are (−26.2±1.26) kJ/mol and 14.6 kJ/mol, respectively. The apparent inclusion constant of the whole process was (1.34±0.193)×1013 M−2, and the corresponding ΔH and −TΔS were (−64.4±3.19) kJ/mol and −9.43 kJ/mol, respectively, suggesting that the host-guest complexation was driven by both enthalpy and entropy.
-
Key words:
- supramolecular chemistry /
- cucurbituril /
- viologen /
- host-guest interaction /
- self-assembling
-
表 1 EBV和CB[8]包结行为的ITC测定值(298.15 K)
Table 1. ITC values of the complexation of EBV with CB[8] (298.15 K)
Item K1/M−1 K2/M−1 Ka/M−2 n1 n2 ΔH1/(kJ·mol−1) ΔH2/(kJ·mol−1) ΔS1/(J·mol·K−1) ΔS2/(J·mol·K−1) ΔH(kJ·mol−1)) −TΔS/(kJ·mol−1) Value 1.65×107 8.14×105 1.34×1013 0.975 1.034 −26.2 −38.25 48.94 −17.32 −64.4 −9.43 Error ±1.22×107 ±1.58×105 ±0.193×1013 ±0.062 ±0.068 ±1.26 ±1.936 − − ±3.19 − Ka= K1K2, ΔH=ΔH1+ΔH2, −TΔS=−T(ΔS1+ΔS2); n1, n2—Stoichiometric ratio of the first and the second step inclusion process, respectively -
[1] NI X L, XIN X, HANG C, et al. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chemical Society Reviews, 2013, 42(24): 9480-9508. doi: 10.1039/c3cs60261c [2] KIM J, JUNG IS, KIM SY, et al. New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8)[J]. Journal of the American Chemical Society, 2000, 122(3): 540-541. doi: 10.1021/ja993376p [3] DAY A, ARNOLD A P, BLANCH R J, et al. Controlling factors in the synthesis of cucurbituril and its homologues[J]. Journal of Organic Chemistry, 2001, 66(24): 8094-8100. doi: 10.1021/jo015897c [4] LAGONA J, MUKHOPADHYAY P, CHAKRABARTI S, et al. The cucurbit[n]uril family[J]. Angewandte Chemie International Edition, 2005, 44(31): 4844-4870. doi: 10.1002/anie.200460675 [5] 王巧纯. 向日葵状葫芦脲的合成与超分子自组装[J]. 功能高分子学报, 2019, 32(1): 9-12. [6] BUSH M E, BOULEY N D, URBACH A R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host[J]. Journal of the American Chemical Society, 2005, 127(41): 14511-14517. doi: 10.1021/ja0548440 [7] ZHANG X D, TAO S, NI X L. Fluorescent visualization of cucurbit[8]uril-triggered dynamic host-guest assemblies[J]. Organic Chemistry Frontiers, 2021, 8(1): 32-38. doi: 10.1039/D0QO00649A [8] ZHU L L, YAN H, WANG X J, et al. Light-controllable cucurbit[7]uril-based molecular shuttle[J]. Journal of Organic Chemistry, 2012, 77(22): 10168-10175. doi: 10.1021/jo301807y [9] BARROW S J, KASERA S, ROWLAND M J, et al. Cucurbituril-based molecular recognition[J]. Chemical Reviews, 2015, 115(22): 12320-12406. doi: 10.1021/acs.chemrev.5b00341 [10] JEON W S, KIM H J, LEE C, et al. Control of the stoichiometry in host-guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril[J]. Chemical Communications, 2002, 17: 1828-1829. [11] ZHANG Q, QU D H, WANG Q C, et al. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction[J]. Angewandte Chemie International Edition, 2015, 54(52): 15789-15793. doi: 10.1002/anie.201509071 [12] ZHANG C C, LIU X L, LIU Y P, et al. Two-dimensional supramolecular nanoarchitectures of polypseudorotaxanes based on cucurbit[8]uril for highly efficient electrochemical nitrogen reduction[J]. Chemistry of Materials, 2020, 32(19): 8724-8732. doi: 10.1021/acs.chemmater.0c03425 [13] KIM K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies[J]. Chemical Society Reviews, 2002, 31(2): 96-107. doi: 10.1039/a900939f [14] MOON K, KAIFER A E. Modes of binding interaction between viologen guests and the cucurbit[7]uril host[J]. Organic Letters, 2004, 6(2): 185-188. doi: 10.1021/ol035967x [15] SINDELAR V, MOON K, KAIFER A E. Binding selectivity of cucurbit[7]uril: Bis(pyridinium)-1,4-xylylene versus 4,4’-Bipyridinium guest sites[J]. Organic Letters, 2004, 6(16): 2665-2668. doi: 10.1021/ol049140u [16] LUTZ F, NEREA L P, SCHMIDT T C, et al. Heteroternary cucurbit[8]uril complexes as supramolecular scaffolds for self-assembled bifunctional photoredoxcatalysts[J]. Chemical Communications, 2021, 57(23): 2887-2890. doi: 10.1039/D0CC08025J [17] HEINEN S, WALDER L. Generation-dependent intramolecular CT complexation in a dendrimer electron sponge consisting of a viologen skeleton[J]. Angewandte Chemie International Edition, 2000, 39(4): 806-809. doi: 10.1002/(SICI)1521-3773(20000218)39:4<806::AID-ANIE806>3.0.CO;2-I [18] NAGARJUNA G, HUI J, CHENG K J, et al. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents[J]. Journal of the American Chemical Society, 2014, 136(46): 16309-16316. doi: 10.1021/ja508482e [19] BARDELANG D, UDACHIN K A, LEEK D M, et al. Cucurbit[n]urils (n=5—8): A comprehensive solid state study[J]. Crystal Growth & Design, 2011, 11(12): 5598-614. [20] JI H L, LIU F Y, SUN S G. Study of the counter anions in the host-guest chemistry of cucurbit[8]uril and 1-ethyl-1’-benzyl-4,4’-bipyridinium[J]. The Scientific World Journal, 2013: 452056. [21] ZHANG T Y, SUN S G, LIU F Y, et al. Interaction of DNA and a series of aromatic donor-viologen acceptor molecules with and without the presence of CB[8][J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9789-9795. doi: 10.1039/c0cp02664f -