高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

不对称苄基紫精与葫芦[8]脲包结行为的探究

张锦锦 邹雷 王巧纯

张锦锦, 邹雷, 王巧纯. 不对称苄基紫精与葫芦[8]脲包结行为的探究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210407001
引用本文: 张锦锦, 邹雷, 王巧纯. 不对称苄基紫精与葫芦[8]脲包结行为的探究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210407001
ZHANG Jinjin, ZOU Lei, WANG Qiaochun. Inclusion Behaviors of Benzyl-Containing Asymmetric Viologen with Cucurbit[8]uril[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210407001
Citation: ZHANG Jinjin, ZOU Lei, WANG Qiaochun. Inclusion Behaviors of Benzyl-Containing Asymmetric Viologen with Cucurbit[8]uril[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210407001

不对称苄基紫精与葫芦[8]脲包结行为的探究

doi: 10.14135/j.cnki.1006-3080.20210407001
基金项目: 国家自然科学基金(21572063)
详细信息
    作者简介:

    张锦锦(1998—),女,安徽人,硕士生,主要研究方向为葫芦脲的合成及超分子聚合物。E-mail:jane_zhang_9@163.com

    通讯作者:

    王巧纯,E-mail:qcwang@ecust.edu.cn

  • 中图分类号: O69

Inclusion Behaviors of Benzyl-Containing Asymmetric Viologen with Cucurbit[8]uril

  • 摘要: 研究芳环取代紫精分子与葫芦[8]脲(CB[8])的包结模式,对进一步构建相关超分子聚合物,甚至是刺激响应型材料具有重要意义。本文选取不对称的1-乙基-1’-苄基-4,4’-联吡啶溴化盐(EBV),通过1H-NMR、等温滴定量热法ITC和高分辨质谱HRMS等手段,详细考察其与CB[8]在水中的包结行为。研究结果发现,EBV的苄基单元会进入到CB[8]内腔中,在经历1∶1包结后,最终形成1个CB[8]分子包结2个苄基的1∶2超分子体系。其中1∶1包结过程的结合常数为1.65(±1.22)×107 M−1(1 M=1 mol/L),而整个过程的表观包结常数为1.34(±0.193)×1013 M−2,对应的ΔH和−TΔS分别为−64.4(±3.19) kJ/mol和−9.43 kJ/mol,表明该主客体组装行为是由焓和熵共同驱动的。

     

  • 图  1  EBV的合成(a)及其与CB[8]组装成超分子的过程(b)

    Figure  1.  Synthesis of EBV(a) and the process of assembling it into supramolecules with CB[8](b)

    图  2  往EBV(c=2.86×10−2 mol/L)中逐渐加入CB[8]的1H-NMR(400 MHz,D2O)图谱(★为CB[8]峰,CB[8]与EBV物质的量之比:(a) 0∶2;(b) 0.4∶2;(c) 0.8∶2;(d) 1.0∶2;(e) 1.5∶2;(f) 2.5:2)

    Figure  2.  1H-NMR (400 MHz, D2O) spectrum of CB[8] gradually added to EBV (c=2.86×10−2 mol/L) (★ is the peak of CB[8], the molar ratio of CB[8] to EBV: (a) 0∶2;(b) 0.4∶2;(c) 0.8∶2;(d) 1.0∶2;(e) 1.5∶2;(f) 2.5∶2)

    图  3  将EBV(1.30×10−3 mol/L)在25 ℃滴加到CB[8](1.00×10−4 mol/L)水溶液中的ITC结果

    Figure  3.  ITC result of the complexation of EBV(1.30×10−3 mol/L) with CB[8](1.00×10−4 mol/L) in aqueous solution at 25 °C

    图  4  EBV与CB[8]包结物的ESI-HRMS(插图(a)、(b)分别为1∶1、1∶2包结信号峰的放大图,测试图(左侧),理论模拟图(右侧))

    Figure  4.  ESI-HRMS of the EBV/CB[8] complex (inserted (a) and (b) are the enlarged images of 1∶1 and 1∶2 inclusions signal peaks respectively, test spectra (left), the corresponding simulated spectra (right))

  • [1] NI X L, Xin X, HANG C, et al. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chemical Society Revi-ews, 2013, 42(24): 9480-9508. doi: 10.1039/c3cs60261c
    [2] KIM J, JUNG IS, KIM SY, et al. New cucurbituril homologues: Syntheses, isolation, characterizati-on, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8)[J]. Journal of the American Chem-ical Society, 2000, 122(3): 540-541. doi: 10.1021/ja993376p
    [3] DAY A, ARNOLD A P, BLANCH R J, et al. Controll-ing factors in the synthesis of cucurbituril and its homologues[J]. Journal of Organic Chemistry, 2001, 66(24): 8094-8100. doi: 10.1021/jo015897c
    [4] LAGONA J, MUKHOPADHYAY P, CHAKRABA-RTI S, et al. The cucurbit[n]uril family[J]. Ange-wandte Chemie-International Edition, 2005, 44(31): 4844-4870. doi: 10.1002/anie.200460675
    [5] 王巧纯. 向日葵状葫芦脲的合成与超分子自组装[J]. 功能高分子学报, 2019, 32(1): 9-12.
    [6] BUSH M E, BOULEY N D, URBACH A R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host[J]. Journal of the American Chemical Society, 2005, 127(41): 14511-14517. doi: 10.1021/ja0548440
    [7] ZHANG X D, TAO S, NI X L. Fluorescent visualization of cucurbit[8]uril-triggered dynamic host-guest assemblies[J]. Organic Chemistry Fron-tiers, 2021, 8(1): 32-38. doi: 10.1039/D0QO00649A
    [8] ZHU L L, YAN H, WANG X J, et al. Light-controllable cucurbit[7]uril-based molecular shuttle[J]. Journal of Organic Chemistry, 2012, 77(22): 10168-10175. doi: 10.1021/jo301807y
    [9] BARROW S J, KASERA S, ROWLAND M J, et al. Cucurbituril-based molecular recognition[J]. Chemical Reviews, 2015, 115(22): 12320-12406. doi: 10.1021/acs.chemrev.5b00341
    [10] JEON W S, KIM H J, LEE C, et al. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril[J]. Chemical Communications, 2002, 17: 1828-1829.
    [11] ZHANG Q, QU D H, WANG Q C, et al. Dual-mode controlled self-assembly of TiO2 nanopar-ticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction[J]. Angewandte Chemie-International Edition, 2015, 54(52): 15789-15793. doi: 10.1002/anie.201509071
    [12] ZHANG C C, LIU X L, LIU Y P, et al. Two-dimensional supramolecular nanoarchitectures of polypseudorotaxanes based on cucurbit[8]uril for highly efficient electrochemical nitrogen reduction[J]. Chemistry of Materials, 2020, 32(19): 8724-8732. doi: 10.1021/acs.chemmater.0c03425
    [13] KIM K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecul-ar assemblies[J]. Chemical Society Reviews, 2002, 31(2): 96-107. doi: 10.1039/a900939f
    [14] MOON K, KAIFER A E. Modes of binding interaction between viologen guests and the cucurbit[7]uril host[J]. Organic Letters, 2004, 6(2): 185-188. doi: 10.1021/ol035967x
    [15] SINDELAR V, MOON K, KAIFER A E. Binding selectivity of cucurbit[7]uril: Bis(pyridinium)-1,4-xylylene versus 4,4’-Bipyridinium guest sites[J]. Organic Letters, 2004, 6(16): 2665-2668. doi: 10.1021/ol049140u
    [16] LUTZ F, NEREA L P, SCHMIDT T C, et al. Heteroternary cucurbit[8]uril complexes as supramolecular scaffolds for self-assembled bifunctional photoredoxcatalysts[J]. Chemical Communications, 2021, 57(23): 2887-2890. doi: 10.1039/D0CC08025J
    [17] HEINEN S, WALDER L. Generation‐dependent intramolecular CT complexation in a dendrimer electron sponge consisting of a viologen skeleton[J]. Angewandte Chemie-International Edition, 2000, 39(4): 806-809. doi: 10.1002/(SICI)1521-3773(20000218)39:4<806::AID-ANIE806>3.0.CO;2-I
    [18] NAGARJUNA G, HUI J, CHENG K J, et al. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents[J]. Journal of the American Chemical Society, 2014, 136(46): 16309-16316. doi: 10.1021/ja508482e
    [19] BARDELANG D, UDACHIN K A, LEEK D M, et al. Cucurbit[n]urils (n=5-8): A comprehensive solid state study[J]. Crystal Growth & Design, 2011, 11(12): 5598-614.
    [20] JI H L, LIU F Y, SUN S G. Study of the counter anions in the host-guest chemistry of cucurbit[8]uril and 1-ethyl-1’-benzyl-4,4’-bipyridinium[J]. The Scientific World Journal, 2013: 452056.
    [21] ZHANG T Y, SUN S G, LIU F Y, et al. Interaction of DNA and a series of aromatic donor–viologen acceptor molecules with and without the presence of CB[8][J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9789-9795. doi: 10.1039/c0cp02664f
    [22] MATTHEW W F, EDWIN A L. Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions[J]. Methods in Cell Biology, 2008, 84: 79-113.
  • 加载中
图(4)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  138
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 网络出版日期:  2021-05-13

目录

    /

    返回文章
    返回