高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

MoS2纳米复合中空纤维膜的制备及渗透汽化性能

TaymazovDovletjan 李文轩 马晓华 许振良

TaymazovDovletjan, 李文轩, 马晓华, 许振良. MoS2纳米复合中空纤维膜的制备及渗透汽化性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210403001
引用本文: TaymazovDovletjan, 李文轩, 马晓华, 许振良. MoS2纳米复合中空纤维膜的制备及渗透汽化性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210403001
TAYMAZOV Dovletjan, LI Wenxuan, MA Xiaohua, XU Zhenliang. Preparation and Pervaporation Performance of MoS2 Nanocomposite Hollow Fiber Membrane[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210403001
Citation: TAYMAZOV Dovletjan, LI Wenxuan, MA Xiaohua, XU Zhenliang. Preparation and Pervaporation Performance of MoS2 Nanocomposite Hollow Fiber Membrane[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210403001

MoS2纳米复合中空纤维膜的制备及渗透汽化性能

doi: 10.14135/j.cnki.1006-3080.20210403001
基金项目: 国家自然科学基金(21978081)
详细信息
    作者简介:

    TaymazovDovletjan:Dovletjan Taymazov(1996—),男,土库曼斯坦人,硕士生,研究方向为功能膜的制备及应用等

    通讯作者:

    马晓华,E-mail:xiaohuama@ecust.edu.cn

  • 中图分类号: TQ 028.8

Preparation and Pervaporation Performance of MoS2 Nanocomposite Hollow Fiber Membrane

  • 摘要: 二维纳米材料复合膜是目前膜分离领域的研究热点。通过在具有不规则大孔结构的陶瓷中空纤维基膜上引入TiO2过渡层,有效地降低了基膜的孔径和粗糙度。而后在其外表面构筑MoS2/聚乙烯醇分离层,用于异丙醇脱水,通过AFM、SEM、XPS等表征了复合膜的微观形貌,考察了分离层厚度、操作温度及料液浓度对复合膜分离性能的影响。在50 ℃下分离质量分数为90%的异丙醇水溶液时,MoS2/PVA-30复合膜具有较优的分离性能,其渗透通量为486 g/m2·h,分离系数为445。

     

  • 图  1  CHF膜(a)和TiO2-CHF膜(b)的孔径分布图

    Figure  1.  Pore size distribution diagram of CHF membrane (a) and TiO2-CHF membrane (b)

    图  2  CHF基膜(a)和TiO2-CHF膜(b)表面和断面的SEM图

    Figure  2.  SEM images of the surface and cross-section of CHF membrane (a) and TiO2-CHF membrane (b)

    图  3  PVA膜(a1~a2),MoS2膜(b1~b2),MoS2/PVA-30复合膜(c1~c2)和MoS2/PVA-60复合膜(d1~d2)的外表面和横截面的SEM图像

    Figure  3.  SEM images of outer surface and cross-section of PVA membrane (a1~a2), MoS2 membrane (b1~b2), MoS2/PVA-30 composite membrane (c1~c2) and MoS2/PVA-60 composite membrane (d1~d2)

    图  4  TiO2-CHF (a)、MoS2/PVA-30(b)和MoS2/PVA-60(c)复合膜的AFM拓扑结构图和表面粗糙度Ra

    Figure  4.  AFM 3D graphics and the arithmetic average roughness, Ra of TiO2-CHF (a), MoS2/PVA-30 (b) and MoS2/PVA-60 membrane (c)

    图  5  MoS2/PVA-30复合膜表面的EDS元素分布图像 (a),以及PVA膜和MoS2/PVA-30复合膜表面的XPS光谱图 (b)

    Figure  5.  EDS mapping image of MoS2/PVA-30 composite membrane surface (a), and XPS analysis spectral line image (b) of PVA membrane and MoS2/PVA-30 composite membrane surface

    图  6  PVA膜和 (a)MoS2/PVA-30复合膜 (b) Cs1光谱的XPS分析图

    Figure  6.  XPS analysis image of Cs1 spectrum for PVA membrane (a) and MoS2/PVA-30 composite membrane (b)

    图  7  MoS2体相材料粉末 (a),MoS2/PVA-30复合膜 和TiO2-CHF膜(b)的X射线衍射图

    Figure  7.  X-ray diffraction patterns of bulk MoS2 (a), MoS2/PVA-30 composite membrane and TiO2-CHF membrane (b)

    图  8  TiO2-CHF膜 (a),PVA膜 (b),MoS2膜 (c) 和MoS2/PVA-30复合膜 (d) 的水滴和WCA的图像

    Figure  8.  Image of a water droplet and WCA degree of TiO2-CHF membrane (a), PVA membrane (b), MoS2 membrane (c), and MoS2/PVA-30 composite membrane (d)

    图  9  PVA膜和MoS2/PVA-30复合膜的渗透汽化性能。在90%的IPA水溶液中在50 ℃ (a) 和70 ℃ (b) 下进行测试

    Figure  9.  Pervaporation performance of PVA membrane and MoS2/PVA-30 composite membrane. Membranes were tested in 90% IPA aqueous solution at (a) 50 ℃ and (b) 70 ℃

    图  10  在不同抽滤时间下制备的MoS2/PVA复合膜的渗透汽化性能。在90%的IPA水溶液中在50 ℃ (a) 和70 ℃ (b) 下进行测试

    Figure  10.  Pervaporation performance of MoS2/PVA composite membranes prepared under different suction times. Membranes were tested in 90% IPA aqueous solution at 50 ℃ (a) and 70 ℃ (b)

    图  11  MoS2/PVA-30复合膜在不同浓度的IPA水溶液下的渗透汽化性能。在50 ℃ (a) 和70 ℃ (b) 下进行测试

    Figure  11.  Effect of the IPA content in feed on the pervaporation performance of MoS2/PVA-30 composite membrane. Membrane was tested at 50 ℃ (a) and 70 ℃ (b)

    图  12  MoS2/PVA-30复合膜在不同操作温度下的渗透汽化性能。在80%和90%的IPA水溶液中进行测试

    Figure  12.  Operating temperature effect on the pervaporation performance of MoS2/PVA-30 composite membrane. Membrane was tested in 80% and 90% IPA aqueous solution

    图  13  MoS2/PVA-30 复合膜的长期稳定性。在90%的IPA水溶液中在50 ℃下进行测试

    Figure  13.  Long-term stability test of MoS2/PVA-30 membrane. Membrane was tested in 90% IPA aqueous solution at 50 ℃

  • [1] LIN S H, WANG C S. Recovery of isopropyl alcohol from waste solvent of a semiconductor plant[J]. Journal of Hazardous Materials, 2004, 106(2): 161-168.
    [2] HUA D, KANG ONG Y, WANG P, et al. Thin-film composite tri-bore hollow fiber (TFC TbHF) membranes for isopropanol dehydration by pervaporation[J]. Journal of Membrane Science, 2014, 471: 155-167. doi: 10.1016/j.memsci.2014.07.059
    [3] ZUO J, HUA D, MARICAR V, et al. Dehydration of industrial isopropanol (IPA) waste by pervaporation and vapor permeation membranes[J]. Journal of Applied Polymer Science, 2018, 135(24): 45086. doi: 10.1002/app.45086
    [4] VALE A. Isopropanol[J]. Medicine, 2016, 44(3): 179. doi: 10.1016/j.mpmed.2015.12.015
    [5] MEYERS C, KASS R, GOLDENBERG D, et al. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces[J]. Journal of Hospital Infection, 2021, 107: 45-49. doi: 10.1016/j.jhin.2020.09.026
    [6] SMITHA B, SUHANYA D, SRIDHAR S, et al. Separation of organic–organic mixtures by pervaporation—a review[J]. Journal of Membrane Science, 2004, 241(1): 1-21. doi: 10.1016/j.memsci.2004.03.042
    [7] CHAUDHARI S, KWON Y, MOON M, et al. Melamine-modified silicotungstic acid incorporated into the polyvinyl alcohol/polyvinyl amine blend membrane for pervaporation dehydration of water/isopropanol mixtures[J]. Vacuum, 2018, 147: 115-125. doi: 10.1016/j.vacuum.2017.10.024
    [8] CHAPMAN P, OLIVEIRA T, LIVINGSTON A, et al. Membranes for the dehydration of solvents by pervaporation[J]. Journal of Membrane Science, 2008, 318: 5-37. doi: 10.1016/j.memsci.2008.02.061
    [9] RUUTENHUCH R. Membrane Separation Systems - Recent Developments and Future Directions. Von R. W. Baker u. a. Noyes Data Corp., Park Ridge 1991. XV, 451 S., zahlr. Abb. u. Tab., geb., US-$64[J]. Chemie Ingenieur Technik, 1992, 64(6): 584-584.
    [10] 谢博远, 马晓华, 许振良. MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 608-612.
    [11] KIM J H, JEONG J H, KIM N, et al. Mechanical properties of two-dimensional materials and their applications[J]. Journal of Physics D: Applied Physics, 2018, 52(8): 083001.
    [12] LI J, MEDHEKAR N V, SHENOY V B. Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15842-15848. doi: 10.1021/jp403986v
    [13] NOVOSELOV K, GEIM A, MOROZOV S, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Nat Mater, 2004: 6.
    [14] CASILLAS G, SANTIAGO U, BARRON H, et al. Elasticity of MoS2 sheets by mechanical deformation observed by in situ electron microscopy[J]. The Journal of Physical Chemistry: C. Nanomaterials and Interfaces, 2015, 119: 710-715. doi: 10.1021/jp5093459
    [15] LEE G H, YU Y J, CUI X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931-7936. doi: 10.1021/nn402954e
    [16] WEI N, PENG X, XU Z. Understanding water permeation in graphene oxide membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5877-5883.
    [17] TOH R J, SOFER Z, LUXA J, et al. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution[J]. Chemical Communications, 2017, 53(21): 3054-3057. doi: 10.1039/C6CC09952A
    [18] SIM D M, HAN H J, YIM S, et al. Long-term stable 2H-MoS2 dispersion: Critical role of solvent for simultaneous phase restoration and surface functionalization of liquid-exfoliated MoS2[J]. ACS Omega, 2017, 2(8): 4678-4687. doi: 10.1021/acsomega.7b00841
    [19] ZHANG H, TAYMAZOV D, LI M P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. doi: 10.1016/j.memsci.2019.117369
    [20] GOVIND RAJAN A, SRESHT V, PáDUA A A H, et al. Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS2 surfaces[J]. ACS Nano, 2016, 10(10): 9145-9155. doi: 10.1021/acsnano.6b04276
    [21] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
    [22] CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2[J]. Nanoscale Research Letters, 2012, 7(1): 233. doi: 10.1186/1556-276X-7-233
    [23] PENG Q, DE S. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage[J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19427-19437. doi: 10.1039/c3cp52879k
    [24] DENG M, KWAC K, LI M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. doi: 10.1021/acs.nanolett.6b05238
    [25] HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. doi: 10.1021/acsnano.7b05124
    [26] LI Y, YANG S, ZHANG K, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. doi: 10.1016/j.desal.2018.12.016
    [27] LI M N, SUN X F, WANG L, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties[J]. Desalination, 2018, 436: 107-113. doi: 10.1016/j.desal.2018.02.008
    [28] SONG Y, JIANG Z, GAO B, et al. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration[J]. Chemical Engineering Science, 2018, 185: 231-242. doi: 10.1016/j.ces.2018.03.057
    [29] BEREAN K J, OU J Z, DAENEKE T, et al. 2D MoS2 PDMS nanocomposites for NO2 separation[J]. Small, 2015, 11(38): 5035-5040. doi: 10.1002/smll.201501129
    [30] PAN F, DING H, LI W, et al. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets[J]. Journal of Membrane Science, 2018, 545: 29-37. doi: 10.1016/j.memsci.2017.09.054
    [31] ABA N F D, CHONG J Y, WANG B, et al. Graphene oxide membranes on ceramic hollow fibers: Microstructural stability and nanofiltration performance[J]. Journal of Membrane Science, 2015, 484: 87-94. doi: 10.1016/j.memsci.2015.03.001
    [32] TAO K, KONG C, CHEN L. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition[J]. Chemical Engineering Journal, 2013, 220: 1-5. doi: 10.1016/j.cej.2013.01.051
    [33] PAN X L, STROH N, BRUNNER H, et al. Deposition of sol-gel derived membranes on α-Al2O3 hollow fibers by a vacuum-assisted dip-coating process[J]. Journal of Membrane Science, 2003, 226(1): 111-118.
    [34] ZHU L, CHEN M, DONG Y, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion[J]. Water Research, 2016, 90: 277-285. doi: 10.1016/j.watres.2015.12.035
    [35] CAO Y, WANG M, XU Z L, et al. A novel seeding method of interfacial polymerization-assisted dip coating for the preparation of zeolite NaA membranes on ceramic hollow fiber supports[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25386-25395.
    [36] LI L, CHEN M, DONG Y, et al. A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method[J]. Journal of the European Ceramic Society, 2016, 36(8): 2057-2066. doi: 10.1016/j.jeurceramsoc.2016.02.020
    [37] LIU Y, WANG X, YANG F, et al. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films[J]. Microporous and Mesoporous Materials, 2008, 114(1): 431-439.
    [38] WANG J, LI H, LI H, et al. Mesoporous TiO2 thin films exhibiting enhanced thermal stability and controllable pore size: Preparation and photocatalyzed destruction of cationic dyes[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1623-1631.
    [39] WANG M, CAO Y, XU Z L, et al. Facile fabrication and application of superhydrophilic stainless steel hollow fiber microfiltration membranes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10283-10289.
    [40] SUN L, HUANG H, PENG X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. doi: 10.1039/c3cc46136j
    [41] RAN J, ZHANG P, CHU C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 602: 117963. doi: 10.1016/j.memsci.2020.117963
    [42] ZHANG Z, LIU Y, LIN S, et al. Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure[J]. Journal of Polymer Research, 2020, 27(8): 228. doi: 10.1007/s10965-020-02223-0
    [43] MA X H, ZHANG H X, GU S W, et al. Process optimization and modeling of membrane reactor using self-sufficient catalysis and separation of difunctional ceramic composite membrane to produce methyl laurate[J]. Separation and Purification Technology, 2014, 132: 370-377. doi: 10.1016/j.seppur.2014.04.038
    [44] SREEDHAR B, CHATTOPADHYAY D K, KARUNAKAR M S H, et al. Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin[J]. Journal of Applied Polymer Science, 2006, 101(1): 25-34. doi: 10.1002/app.23145
    [45] KURU C, CHOI C, KARGAR A, et al. MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen[J]. Advanced Science, 2015, 2(4): 1500004. doi: 10.1002/advs.201500004
    [46] LIU X W, CAO Y, LI Y X, et al. High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution[J]. Journal of Membrane Science, 2019, 576: 26-35. doi: 10.1016/j.memsci.2019.01.023
    [47] TELI S B, GOKAVI G S, SAIRAM M, et al. Highly water selective silicotungstic acid (H4SiW12O40) incorporated novel sodium alginate hybrid composite membranes for pervaporation dehydration of acetic acid[J]. Separation and Purification Technology, 2007, 54(2): 178-186. doi: 10.1016/j.seppur.2006.09.002
  • 加载中
图(13)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-03
  • 网络出版日期:  2021-07-02

目录

    /

    返回文章
    返回