[1] |
LIN S H, WANG C S. Recovery of isopropyl alcohol from waste solvent of a semiconductor plant[J]. Journal of Hazardous Materials, 2004, 106(2): 161-168.
|
[2] |
HU A D, KANG ONG Y, WANG P, et al. Thin-film composite tri-bore hollow fiber (TFC TbHF) membranes for isopropanol dehydration by pervaporation[J]. Journal of Membrane Science, 2014, 471: 155-167. doi: 10.1016/j.memsci.2014.07.059
|
[3] |
ZUO J, HUA D, MARICAR V, et al. Dehydration of industrial isopropanol (IPA) waste by pervaporation and vapor permeation membranes[J]. Journal of Applied Polymer Science, 2018, 135(24): 45086. doi: 10.1002/app.45086
|
[4] |
VALE A. Isopropanol[J]. Medicine, 2016, 44(3): 179. doi: 10.1016/j.mpmed.2015.12.015
|
[5] |
MEYERS C, KASS R, GOLDENBERG D, et al. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces[J]. Journal of Hospital Infection, 2021, 107: 45-49. doi: 10.1016/j.jhin.2020.09.026
|
[6] |
SMITHA B, SUHANYA D, SRIDHAR S, et al. Separation of organic-organic mixtures by pervaporation: A review[J]. Journal of Membrane Science, 2004, 241(1): 1-21. doi: 10.1016/j.memsci.2004.03.042
|
[7] |
CHAUDHARI S, KWON Y, MOON M, et al. Melamine-modified silicotungstic acid incorporated into the polyvinyl alcohol/polyvinyl amine blend membrane for pervaporation dehydration of water/isopropanol mixtures[J]. Vacuum, 2018, 147: 115-125. doi: 10.1016/j.vacuum.2017.10.024
|
[8] |
CHAPMAN P, OLIVEIRA T, LIVINGSTON A, et al. Membranes for the dehydration of solvents by pervaporation[J]. Journal of Membrane Science, 2008, 318: 5-37. doi: 10.1016/j.memsci.2008.02.061
|
[9] |
BAKER R W. Membrane Separation Systems: Recent Developments and Future Directions [M]. [S.l.]: William Andrew, 1991.
|
[10] |
谢博远, 马晓华, 许振良. MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 608-612.
|
[11] |
KIM J H, JEONG J H, KIM N, et al. Mechanical properties of two-dimensional materials and their applications[J]. Journal of Physics D: Applied Physics, 2018, 52(8): 083001.
|
[12] |
LI J, MEDHEKAR N V, SHENOY V B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15842-15848. doi: 10.1021/jp403986v
|
[13] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
[14] |
CASILLAS G, SANTIAGO U, BARRON H, et al. Elasticity of MoS2 sheets by mechanical deformation observed by in situ electron microscopy[J]. The Journal of Physical Chemistry: C. Nanomaterials and Interfaces, 2015, 119: 710-715. doi: 10.1021/jp5093459
|
[15] |
LEE G H, YU Y J, CUI X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931-7936. doi: 10.1021/nn402954e
|
[16] |
WEI N, PENG X, XU Z. Understanding water permeation in graphene oxide membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5877-5883.
|
[17] |
TOH R J, SOFER Z, LUXA J, et al. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution[J]. Chemical Communications, 2017, 53(21): 3054-3057. doi: 10.1039/C6CC09952A
|
[18] |
SIM D M, HAN H J, YIM S, et al. Long-term stable 2H-MoS2 dispersion: Critical role of solvent for simultaneous phase restoration and surface functionalization of liquid-exfoliated MoS2[J]. ACS Omega, 2017, 2(8): 4678-4687. doi: 10.1021/acsomega.7b00841
|
[19] |
ZHANG H, TAYMAZOV D, LI M P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. doi: 10.1016/j.memsci.2019.117369
|
[20] |
GOVIND R A, SRESHT V, PÁDUA A A H, et al. Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS2 surfaces[J]. ACS Nano, 2016, 10(10): 9145-9155. doi: 10.1021/acsnano.6b04276
|
[21] |
WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
|
[22] |
CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2[J]. Nanoscale Research Letters, 2012, 7(1): 233. doi: 10.1186/1556-276X-7-233
|
[23] |
PENG Q, DE S. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage[J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19427-19437. doi: 10.1039/c3cp52879k
|
[24] |
DENG M, KWAC K, LI M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. doi: 10.1021/acs.nanolett.6b05238
|
[25] |
HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. doi: 10.1021/acsnano.7b05124
|
[26] |
LI Y, YANG S, ZHANG K, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. doi: 10.1016/j.desal.2018.12.016
|
[27] |
LI M N, SUN X F, WANG L, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties[J]. Desalination, 2018, 436: 107-113. doi: 10.1016/j.desal.2018.02.008
|
[28] |
SONG Y, JIANG Z, GAO B, et al. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration[J]. Chemical Engineering Science, 2018, 185: 231-242. doi: 10.1016/j.ces.2018.03.057
|
[29] |
BEREAN K J, OU J Z, DAENEKE T, et al. 2D MoS2 PDMS nanocomposites for NO2 separation[J]. Small, 2015, 11(38): 5035-5040. doi: 10.1002/smll.201501129
|
[30] |
PAN F, DING H, LI W, et al. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets[J]. Journal of Membrane Science, 2018, 545: 29-37. doi: 10.1016/j.memsci.2017.09.054
|
[31] |
ABA N F D, CHONG J Y, WANG B, et al. Graphene oxide membranes on ceramic hollow fibers: Microstructural stability and nanofiltration performance[J]. Journal of Membrane Science, 2015, 484: 87-94. doi: 10.1016/j.memsci.2015.03.001
|
[32] |
TAO K, KONG C, CHEN L. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition[J]. Chemical Engineering Journal, 2013, 220: 1-5. doi: 10.1016/j.cej.2013.01.051
|
[33] |
PAN X L, STROH N, BRUNNER H, et al. Deposition of sol-gel derived membranes on α-Al2O3 hollow fibers by a vacuum-assisted dip-coating process[J]. Journal of Membrane Science, 2003, 226(1/2): 111-118.
|
[34] |
ZHU L, CHEN M, DONG Y, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion[J]. Water Research, 2016, 90: 277-285. doi: 10.1016/j.watres.2015.12.035
|
[35] |
CAO Y, WANG M, XU Z L, et al. A novel seeding method of interfacial polymerization-assisted dip coating for the preparation of zeolite NaA membranes on ceramic hollow fiber supports[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25386-25395.
|
[36] |
LI L, CHEN M, DONG Y, et al. A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method[J]. Journal of the European Ceramic Society, 2016, 36(8): 2057-2066. doi: 10.1016/j.jeurceramsoc.2016.02.020
|
[37] |
LIU Y, WANG X, YANG F, et al. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films[J]. Microporous and Mesoporous Materials, 2008, 114(1): 431-439.
|
[38] |
WANG J, LI H, LI H, et al. Mesoporous TiO2 thin films exhibiting enhanced thermal stability and controllable pore size: Preparation and photocatalyzed destruction of cationic dyes[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1623-1631.
|
[39] |
WANG M, CAO Y, XU Z L, et al. Facile fabrication and application of superhydrophilic stainless steel hollow fiber microfiltration membranes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10283-10289.
|
[40] |
SUN L, HUANG H, PENG X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. doi: 10.1039/c3cc46136j
|
[41] |
RAN J, ZHANG P, CHU C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 602: 117963. doi: 10.1016/j.memsci.2020.117963
|
[42] |
ZHANG Z, LIU Y, LIN S, et al. Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure[J]. Journal of Polymer Research, 2020, 27(8): 228. doi: 10.1007/s10965-020-02223-0
|
[43] |
MA X H, ZHANG H X, GU S W, et al. Process optimization and modeling of membrane reactor using self-sufficient catalysis and separation of difunctional ceramic composite membrane to produce methyl laurate[J]. Separation and Purification Technology, 2014, 132: 370-377. doi: 10.1016/j.seppur.2014.04.038
|
[44] |
SREEDHAR B, CHATTOPADHYAY D K, KARUNAKAR M S H, et al. Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin[J]. Journal of Applied Polymer Science, 2006, 101(1): 25-34. doi: 10.1002/app.23145
|
[45] |
KURU C, CHOI C, KARGAR A, et al. MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen[J]. Advanced Science, 2015, 2(4): 1500004. doi: 10.1002/advs.201500004
|
[46] |
LIU X W, CAO Y, LI Y X, et al. High-performance polyamide/ceramichollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution[J]. Journal of Membrane Science, 2019, 576: 26-35. doi: 10.1016/j.memsci.2019.01.023
|
[47] |
TELI S B, GOKAVI G S, SAIRAM M, et al. Highly water selective silicotungstic acid (H4SiW12O40) incorporated novel sodium alginate hybrid composite membranes for pervaporation dehydration of acetic acid[J]. Separation and Purification Technology, 2007, 54(2): 178-186. doi: 10.1016/j.seppur.2006.09.002
|