Microstructure and Properties of Carbonate Salt Based on Machine Learning
-
摘要: 采用第一性原理计算、机器学习以及经典分子动力学模拟联用的方法对K2CO3和Na2CO3熔融状态下的结构和性质进行计算,计算结果表明,K2CO3的能量(单位原子能量之和,余同)与受力的均方根误差分别为8.62×10−4 eV和4.67×108 eV/m;Na2CO3的能量与受力的均方根误差分别为1.19×10−3 eV和5.31×108 eV/m,计算值与文献值吻合较好。K2CO3的密度、比热容和热导率的计算偏差分别约为5.0%、3.3%和8.0%,Na2CO3的密度、比热容和热导率的计算偏差分别约为5.6%、6.0%和3.5%。Abstract: Molten alkali carbonate are widely concerned as potential thermal storage and transfer materials in solar power utilization. As an effective method in molten salt research, computer simulations have been widely used. Local structure and some physical properties of K2CO3 and Na2CO3 at different temperatures were calculated by a complex simulation method including first-principle molecular dynamics, machine learning and classical molecular dynamics. In this method, first-principle molecular dynamics offered accuracy structure information, machine learning was used to create deep potential from structure information to describe potential energy of system, and classical molecular dynamics was used to perform large scale simulation. This complex method could reduce calculation errors caused by potential functions and empirical parameters. The calculation results showed that energy and force test errors of K2CO3 were 8.62×10−4 eV and 4.67×108 eV/m, respectively; energy and force test errors of Na2CO3 were 1.19×10−3 eV and 5.31×108 eV/m, respectively. In all simulation processes, the carbonate ion was a standard equilateral triangle structure in the system, and carbonate clusters were slightly loosened with the increase of temperature; the distance between anions and cations gradually increased with the increase of temperature. The result showed that simulated data of the property was in good agreement with the literature value. The deviations of density, specific heat capacity and thermal conductivity of K2CO3 were about 5.0%, 3.3% and 8.0%. The deviations of density, specific heat capacity and thermal conductivity of Na2CO3 were about 5.6%, 6.0% and 3.5%.
-
Key words:
- ionic structure /
- properties of molten salt /
- molecular dynamics /
- molten carbonate salt
-
表 1 K2CO3和Na2CO3的比热容的模拟值与文献值对比
Table 1. Comparison of simulated and literature values of the Cp of K2CO3 and Na2CO3
Carbonate salt Cp/(J·g−1·K−1) Simulated value Literature value K2CO3 1.56 1.51 Na2CO3 1.72 1.83 -
[1] BRADSHAW R W, CORDARO J G, SIEGEL N P. Molten nitrate salt development for thermal energy storage in parabolic through solar power systems[R]. San Francisco, California, USA: The American Society of Mechanical Engineers, 2009. [2] SANG L, CAI M, REN N, et al. Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate[J]. Solar Energy Materials and Solar Cells, 2014, 124: 61-66. doi: 10.1016/j.solmat.2014.01.025 [3] MARK M, CRAIG T, JUDITH V, et al. Concentrating solar power Gen3 demonstration roadmap[R]. Golden, Colorado, USA: National Renewable Energy Lab, 2017. [4] KRUIZENGA A M. Corrosion mechanisms in chloride and carbonate salts[R]. Livermore, California, USA: Sandia Narional Laboratories, 2012. [5] BRIK M G. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3[J]. Physical B: Condensed Matter, 2011, 406(4): 1004-1012. doi: 10.1016/j.physb.2010.12.049 [6] DUNSTAN M T, GRIFFIN J M, BLANC F, et al. Ion dynamics in Li2CO3 studied by solid-state NMR and first-principles calculations[J]. Journal of Physical Chemistry C, 2015, 119(43): 24255-24264. doi: 10.1021/acs.jpcc.5b06647 [7] GARCIA L J M, MYRDAL J S G, CHRISTENSEN R, et al. DFT+U Study of polaronic conduction in Li2O2 and Li2CO3: Implications for Li-air batteries[J]. Journal of Physical Chemistry C, 2013, 117(11): 5568-5577. doi: 10.1021/jp3107809 [8] PHAM T A, KWEON K E, SAMANTA A, et al. Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations[J]. Journal of Physical Chemistry C, 2017, 121(40): 21913-21920. doi: 10.1021/acs.jpcc.7b06457 [9] OTTOCHIAN A, RICCA C, LABAT F, et al. Molecular dynamics simulations of a lithium/sodium carbonate mixture[J]. Journal of Molecular Modeling, 2016, 22(3): 1-8. doi: 10.1007/s00894-016-2921-4 [10] ZAKIRYANOV D O, TKACHEV N K. Thermal conductivity of alkali metal chlorides: Calculation with molecular dynamics method[J]. High Temperature, 2020, 58(1): 54-57. doi: 10.1134/S0018151X20010228 [11] WANG J, WU J, SUN Z, et al. Molecular dynamics study of the transport properties and local structures of molten binary systems (Li, Na)Cl, (Li, K)Cl and (Na, K)Cl[J]. Journal of Molecular Liquids, 2015, 209: 498-507. doi: 10.1016/j.molliq.2015.06.021 [12] JAYARAMAN S, THOMPSON A P, LILIENFELDO A, et al. Molecular simulation of the thermal and transport properties of three alkali nitrate salts[J]. Industrial and Engineering Chemistry Research, 2010, 49(2): 559-571. doi: 10.1021/ie9007216 [13] KOISHI T, KAWASE S I, TAMAKI S, et al. Computer simulation of molten Li2CO3-K2CO3 mixtures[J]. Journal of the Physical Society of Japan, 2000, 96: 3291-3296. [14] COSTA M F. Molecular dynamics of molten Li2CO3-K2CO3[J]. Journal of Molecular Liquids, 2008, 138(1/3): 61-68. doi: 10.1016/j.molliq.2007.08.001 [15] DU L, XIE W, DING J, et al. Molecular dynamics simulations of the thermodynamic properties and local structures on molten alkali carbonate Na2CO3[J]. International Journal of Heat and Mass Transfer, 2019, 131: 41-51. doi: 10.1016/j.ijheatmasstransfer.2018.11.044 [16] DESMAELE E, SATOR N, VUILLEUMIER R, et al. Atomistic simulations of molten carbonates: Thermodynamic and transport properties of the Li2CO3-Na2CO3-K2CO3 system[J]. Journal of Chemical Physical, 2019, 150(9): 094504. doi: 10.1063/1.5082731 [17] KIYOBAYASHI T, KOJIMA T, OZAKI H, et al. Ionic conductivity of molten alkali-metal carbonates A2CO3 (A = Li, Na, K, Rb, and Cs) and binary mixtures (Li1-xCsx)2CO3 and (Li1-xKx)2CO3: A molecular dynamics simulation[J]. Journal of Chemical Physical, 2019, 151(7): 074503. doi: 10.1063/1.5109912 [18] ROEST D L, BALLONE P, BDEDAUX D, et al. Molecular dynamics simulations of metal/molten alkali carbonate interfaces[J]. Journal of Physical Chemistry C, 2017, 121(33): 17827-17847. doi: 10.1021/acs.jpcc.7b02842 [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865 [20] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B: Condens Matter Materials Physics, 1994, 50(24): 17953-17979. doi: 10.1103/PhysRevB.50.17953 [21] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758 [22] TUO P, YE X B, PAN B C. A machine learning based deep potential for seeking the low-lying candidates of Al clusters[J]. Journal of Chemical Physical, 2020, 152(11): 114105. [23] LIANG W S, LU G M, YU J G. Molecular dynamics simulations of molten magnesium chloride using machine‐learning‐based deep potential[J]. Advnced Theory and Simulations, 2020, 3(12): 2000180. doi: 10.1002/adts.202000180 [24] KINGMA D P, BA J L. Adam: A method for stochastic optimization[C]//The 3rd International Conference for Learning Representations. San Diego, USA: [s.n.], 2015:1-15. [25] ZHANG L F, HAN J Q, WANG H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics[J]. Physical Review Letters, 2018, 120(14): 143001. [26] SOMMERS G M, CALEGARI A M F, ZHANG L, et al. Raman spectrum and polarizability of liquid water from deep neural networks[J]. Physical Chemistry Chemical Physical, 2020, 22(19): 10592-10602. doi: 10.1039/D0CP01893G [27] ZENG J, CAO L, XU M, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation[J]. Nature Communications, 2020, 11(1): 1-9. doi: 10.1038/s41467-020-19497-z [28] ALLEN M P, TLLDESLEY D J. Computer Simulation of Liquids[M]. New York: Oxford University Press, 1987. [29] MELCHIONNA S, CICCOTTI G, LEE H B. Hoover NPT dynamics for systems varying in shape and size[J]. Molecular Physics, 1993, 78(3): 533-544. doi: 10.1080/00268979300100371 [30] MARTYNA G J, TOBIAS D J, KLEIN M L. Constant pressure molecular dynamics algorithms[J]. Journal of Chemical Physical, 1994, 101(5): 4177-4189. doi: 10.1063/1.467468 [31] WIRNSBERGER P, D FRENKEL, DELLAGO C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties[J]. Journal of Chemical Physical, 2015, 143(12): 124104. doi: 10.1063/1.4931597 [32] ZHANG M, LUSSETTI E, SOUZA L E S D, et al. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics[J]. Journal of Physical Chemistry B, 2005, 109(31): 15060-15067. doi: 10.1021/jp0512255 [33] JANZ G J, ALLEN C B, BANSAL N P, et al. Physical properties data compilations relevant to energy storage. II. Molten salts: Data on single and multi-component systems[R]. New York, USA: National Bureau of Standards, 1979. [34] OTSUBO S, IBATA T, NAGASHIMA A. Experimental study on the forced Rayleigh scattering method using CO2 laser[J]. Transactions of the Japan Society of Mechanical Engineers B, 1998, 64(617): 182-187. doi: 10.1299/kikaib.64.182 -