高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

含尘气泡形变及相互作用对颗粒脱除率的影响

梁纤 潘伟童 陈雪莉

梁纤, 潘伟童, 陈雪莉. 含尘气泡形变及相互作用对颗粒脱除率的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210331003
引用本文: 梁纤, 潘伟童, 陈雪莉. 含尘气泡形变及相互作用对颗粒脱除率的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210331003
LIANG Xian, PAN Weitong, CHEN Xueli. Influence of Dust-Containing Bubble Deformation and Interaction on Particle Removal Rate[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210331003
Citation: LIANG Xian, PAN Weitong, CHEN Xueli. Influence of Dust-Containing Bubble Deformation and Interaction on Particle Removal Rate[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210331003

含尘气泡形变及相互作用对颗粒脱除率的影响

doi: 10.14135/j.cnki.1006-3080.20210331003
基金项目: 国家重点研发计划(2017YFB0602601)
详细信息
    作者简介:

    梁纤(1998-),女,四川绵阳人,硕士生,主研究方向含尘气泡三相数值模拟,15390484598@163.com

    通讯作者:

    陈雪莉,cxl@ecust.edu.cn

  • 中图分类号: TQ028.2

Influence of Dust-Containing Bubble Deformation and Interaction on Particle Removal Rate

  • 摘要: 基于流体体积-离散相模型(VOF-DPM)耦合方法,研究了初始静止液体中含尘单气泡和并行含尘双气泡的上升过程及对颗粒脱除率的影响。结果表明,上升气泡形变对固体颗粒的脱除具有增强作用,不同粒径颗粒在不同尺寸气泡中的脱除率差异明显,存在使其高效脱除的适宜气泡尺寸范围。不同尺寸并行双气泡上升过程中的相互作用对颗粒脱除的影响存在差异,8 ~10 mm双气泡相互作用强化了1 μm颗粒的脱除,而12 ~14 mm双气泡相互作用则弱化了1 μm颗粒的脱除。

     

  • 图  1  三维物理模型(球体为初始含尘气泡)

    Figure  1.  physical model(the sphere is the initial dust-containing bubble)

    图  2  单气泡上升实验装置

    Figure  2.  Schematic diagram of single bubble rise experimental device

    图  3  气泡形变比较((a)实验结果(b)模拟结果)

    Figure  3.  Comparison of bubble deformation ((a) experimental results (b) simulation results)

    图  4  不同尺寸含尘单气泡上升过程

    Figure  4.  The rising process of dust-containing single bubbles of different sizes

    图  5  不同尺寸并行含尘双气泡上升过程

    Figure  5.  The rising process of parallel dust-containing double bubbles of different sizes

    图  6  不同尺寸含尘单气泡中颗粒的脱除率

    Figure  6.  Removal rate of particles in different sizes of dust-containing single bubbles

    图  7  含不同粒径颗粒单气泡上升过程形态变化

    Figure  7.  Morphological change of dust-containing single bubbles of different sizes during the rising process

    图  8  不同尺寸单气泡内颗粒脱除过程

    Figure  8.  Removal of particles in single bubbles of different sizes

    图  9  颗粒的脱除速率随时间变化

    Figure  9.  Rate of removal of particles over time

    图  10  不同上升时间单气泡内颗粒浓度分布变化

    Figure  10.  Changes in particle concentration distribution in single bubbles with different rise times

    图  11  不同尺寸并行含尘双气泡内颗粒脱除过程(dp=1 μm)  

    Figure  11.  Removal of particles in parallel dust-containing double bubbles of different sizes(dp=1 μm)

    图  12  不同尺寸含尘单气泡与并行含尘双气泡颗粒脱除率(dp=1 μm)

    Figure  12.  Removal rate of particles with different sizes of dust-containing single-bubble and parallel dust-containing double bubbles(dp=1 μm)

    图  13  并行含尘双气泡颗粒脱除速率随时间变化(dp=1 μm)  

    Figure  13.  The removal rate of parallel dust-containing double bubbles varies with time(dp=1 μm)

    图  14  不同时段内并行含尘双气泡运动趋势变化(db=8 mm)

    Figure  14.  Trend change of parallel dust-containing double bubbles movement in different time periods(db=8 mm)

    图  15  并行含尘双气泡上升过程中流场变化(db=8 mm)

    Figure  15.  Flow field changes during the rising process of parallel dust-containing double bubbles(db=8 mm)

    图  16  t=0.045 s与0.065 s时含尘双气泡内颗粒浓度分布(db=12 mm)

    Figure  16.  Particle concentration distribution in dust-containing double bubbles at t=0.045 s and 0.065 s(db=12 mm)

  • [1] LI R, CUI L, LI J, et al. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014-2016[J]. Atmospheric environment, 2017, 161(6): 235-246.
    [2] IDEMURA H, KANAI T, YANAGIOKA H. Flue gas desulfurization/jet equal bubbling flue gas desulfurization[J]. Chemical Engineering Progress, 1978, 74: 943.
    [3] GRACE J R, WAIREGI T, NGUYEN T H. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Transactions of the Institution of Chemical Engineers, 1976, 54: 167-173.
    [4] BHAGA D, WEBER M E. Bubbles in viscous liquids: Shapes, wakes, and velocities[J]. Journal of Fluid Mechanics, 1981, 105: 61-85. doi: 10.1017/S002211208100311X
    [5] BEL FDHILA R, DUINEVELD P C. The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers[J]. Physics of Fluids, 1996, 8(2): 310-321. doi: 10.1063/1.868787
    [6] CHANG Y S, JEONG K H, LEE H J, et al. Behavior of thermal bubbles formed from a single nu-cleation site[J]. Journal of Mechanical Science and Technology, 2010, 24: 415-420. doi: 10.1007/s12206-009-1112-y
    [7] 闫红杰, 赵国建, 刘柳, 等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2513-2520. doi: 10.11817/j.issn.1672-7207.2016.07.015
    [8] 李文强, 焦守华, 唐珂, 等. 静水中单气泡运动特性实验研究[J]. 原子能科学技术, 2020, 54(9): 1652-1659. doi: 10.7538/yzk.2019.youxian.0649
    [9] 杨辉, 朱春英, 马友光. 非牛顿流体中双喷嘴连续气泡的生成与聚并[J]. 化学工程, 2016, 44(8): 37-41. doi: 10.3969/j.issn.1005-9954.2016.08.008
    [10] Fan W Y, Ma Y G, Li X L, et al. Numerical study on interaction between two bubbles rising side by side in CMC solution[J]. Chinese Journal of Chemical Engineering, 2009, 17(6): 904-913. doi: 10.1016/S1004-9541(08)60295-5
    [11] 杜煜昊, 熊凯文, 张莹. 水平布置等径气泡上升运动数值模拟分析[J]. 计算力学学报, 2016, 33(6): 889-894. doi: 10.7511/jslx201606014
    [12] RODRIGO V J, DIEGO S, YUE P, et al. Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1/2): 118-132. doi: 10.1016/j.jnnfm.2010.11.003
    [13] TRIPATHI M K, PREMLATA A R, SAHU K C, et al. Two initially spherical bubbles rising in quiescent liquid[J]. Physical Review Fluids 2, 2017: 073601.
    [14] IKROH, YOON, SHIN, et al. Numerical investigation of interaction between rising bubbles in a viscous liquid[J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3165-3172. doi: 10.1007/s12206-016-0627-2
    [15] HOZUMI Y, YOSHIZAWA Y. Numerical analysis of dust particles motion inside gas bubbles for flue gas desulfurization in a jet bubbling reactor[J]. Computers & Fluids, 1992, 21: 211-219.
    [16] CHEN F, ZHAO X, WANG W. Bubble inflation method for dispersing nanoparticles in polymers(in Chinese with English abstract)[J]. Chinese Journal of Chemical Engineering, 2008, 59: 766-772.
    [17] MIRZAEE I, SONG M, CHARMCHI M, et al. A microfluidics-based on-chip impinger for airborne particle collection[J]. Lab Chip, 2016, 16: 2254-2264. doi: 10.1039/C6LC00040A
    [18] FUCHS N A, DAILEY R E, DAVIES C N. The mechanics of aerosols[J]. Physics Today, 1965, 18(4): 249.
    [19] LI Y, ZHANG J P, FAN L S. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior[J]. Chemical Engineering Science, 1999, 54: 5101-5107. doi: 10.1016/S0009-2509(99)00263-8
    [20] XU D, AMETOVA I, GRANO S R. Detachment of coarse particles from oscillating bubbles-The effect of particle contact angle, shape and medium viscosity[J]. International Journal of Mineral Processing, 2011, 101: 50-57. doi: 10.1016/j.minpro.2011.07.003
    [21] PAN W T, CHEN X L, WANG F C. Enhanced effect of bubble deformation on internal particle transport[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 905-918.
    [22] AKBAR M K, GHIAASIAAN S M. Monte carlo simulation of aerosol transport in rising gas bubbles undergoing shape deformation[J]. Journal of Aerosol Science, 2006, 37(6): 735-749. doi: 10.1016/j.jaerosci.2005.06.006
    [23] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [24] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [25] OUNIS H, AHMADI G, MCLAUGHLIN J B. Brownian Diffusion of Sub micrometer Particles in the Viscous Sublayer[J]. Journal of Colloid and Interface Science, 1991, 143(1): 266-277. doi: 10.1016/0021-9797(91)90458-K
  • 加载中
图(16)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-07-01

目录

    /

    返回文章
    返回