高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

低温烧结Al2O3陶瓷微波介电性能

董光宇 李蔚 袁翠

董光宇, 李蔚, 袁翠. 低温烧结Al2O3陶瓷微波介电性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210319002
引用本文: 董光宇, 李蔚, 袁翠. 低温烧结Al2O3陶瓷微波介电性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210319002
DONG Guangyu, LI Wei, YUAN Cui. Microwave Dielectric Properties of Low Temperature Sintered Al2O3 Ceramics[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210319002
Citation: DONG Guangyu, LI Wei, YUAN Cui. Microwave Dielectric Properties of Low Temperature Sintered Al2O3 Ceramics[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210319002

低温烧结Al2O3陶瓷微波介电性能

doi: 10.14135/j.cnki.1006-3080.20210319002
详细信息
    作者简介:

    董光宇(1995-),男,安徽芜湖人,硕士生,研究方向为氧化铝陶瓷。E-mail:Y45180043@mail.ecust.edu.cn

    通讯作者:

    李蔚,E-mail:liweiwei@ecust.edu.cn

  • 中图分类号: TQ174.75

Microwave Dielectric Properties of Low Temperature Sintered Al2O3 Ceramics

  • 摘要: 考察了复合添加剂0.4%CuO−0.5%TiO2−0.1%Nb2O5(质量分数,下同)掺杂Al2O3陶瓷材料的显微结构和微波介电性能。结果表明,添加量为1%的0.4%CuO−0.5%TiO2−0.1%Nb2O5复合添加剂有效地降低了Al2O3陶瓷烧结温度;1150 ℃烧结的样品显微结构均匀且相对密度可以达到96%;随着烧结温度升高材料密度也随之增大,但是出现了晶粒异常长大现象且产生的杂相物质随着烧结温度的升高会聚集。与此同时,这种低温烧结的Al2O3陶瓷材料具有较高的Q×f值,在1150 ℃下烧结样品得到最大Q×f值为64632 GHz。讨论了低温下致密化的原因,以及异常的晶粒长大行为和微波介电性能的变化趋势。

     

  • 图  1  氧化铝粉体原料XRD衍射图

    Figure  1.  XRD diffraction patterns of the alumina powder

    图  2  是氧化铝粉体原料的SEM图

    Figure  2.  SEM image of the alumina powder

    图  3  氧化铝粉体原料粒径分布图

    Figure  3.  Particle size distribution diagram of the alumina powder

    图  4  未掺杂Al2O3陶瓷样品和0.4%CuO+0.5%TiO2+0.1%Nb2O5共掺Al2O3陶瓷样品在不同温度下烧结的密度曲线

    Figure  4.  Density curve of undoped Al2O3 samples and 0.4%CuO+0.5%TiO2+0.1%Nb2O5 co-doped Al2O3 samples sintered at different temperatures

    图  5  0.4%CuO+0.5%TiO2+0.1%Nb2O5共掺Al2O3陶瓷样品在不同温度下烧结的XRD衍射图

    Figure  5.  XRD diffraction patterns of the 0.4%CuO+0.5%TiO2+0.1%Nb2O5 co-doped Al2O3 samples sintered at different temperatures

    图  6  未掺杂Al2O3陶瓷样品在1250 ℃下烧结的SEM图

    Figure  6.  SEM images of undoped Al2O3 samples sintered at 1250 ℃

    图  7  0.4%CuO+0.5%TiO2+0.1%Nb2O5共掺Al2O3陶瓷样品在不同温度下烧结的SEM图

    Figure  7.  SEM images of the 0.4%CuO+0.5%TiO2+0.1%Nb2O5共掺Al2O3 co-doped Al2O3 samples sintered at different temperatures

    图  8  0.4%CuO+0.5%TiO2+0.1%Nb2O5共掺Al2O3陶瓷样品在不同温度下烧结的介电常数(εr)和Q×f值变化曲线

    Figure  8.  Dielectric constant(εr) and Q×f value of the 0.4%CuO+0.5%TiO2+0.1%Nb2O5 co-doped Al2O3 samples sintered at different temperatures

  • [1] 刘强, 钱军, 程志鹏, 等. 核壳结构Fe3O4@C改性PVDF柔性薄膜的介电性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(2): 179-188. doi: 10.14135/j.cnki.1006-3080.20190218002
    [2] 孙小曼, 李蔚, 刘会娇, 等. 不同氧化铝前驱体相转过程的研究[J/OL]. 华东理工大学学报(自然科学版), 2021, 47(4). [2021-04-24]. https://doi.org/10.14135/j.cnki.1006-3080.20200316001.
    [3] 袁翠, 陈成, 李蔚. TiO2/MgO共掺对99氧化铝瓷结构和微波介电性能的影响[J]. 中国陶瓷, 2019, 55(10): 41-45. doi: 10.16521/j.cnki.issn.1001-9642.2019.10.007
    [4] DANG M, LIN H, YAO X, et al. Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics[J]. Ceramics International, 2019, 45(18): 24244-24247. doi: 10.1016/j.ceramint.2019.08.135
    [5] ZHANG Jie, YUE Zhenxing, LUO Yu, et al. MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture[J]. Ceramics International, 2018, 44(17): 21000-21003. doi: 10.1016/j.ceramint.2018.08.135
    [6] TAO Zhang, LEI Yangjun, YIN Jie, et al. Effects of pores on dielectric breakdown of alumina ceramics under AC electric field[J]. Ceramics International, 2019, 45(11): 13951-13957. doi: 10.1016/j.ceramint.2019.04.093
    [7] CHEN J M, WANG H P, FENG S Q, et al. Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics[J]. Ceramics International, 2011, 37(3): 989-993. doi: 10.1016/j.ceramint.2010.11.020
    [8] WANG H, LI W, TERNSTROEM Carl, et al. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic[J]. Ceramics International, 2013, 39(2): 1583-1586. doi: 10.1016/j.ceramint.2012.07.110
    [9] 张康, 李蔚, 林慧兴. MgO/Eu2O3共掺杂对Al2O3陶瓷微波介电性能的影响[J]. 无机材料学报, 2015, 30(09): 984-988. doi: 10.15541/jim20150081
    [10] YUAN L, WANG H, LIN H, et al. Effect of MgO/La2O3 co-doping on the microstructure, transmittance and microwave dielectric properties of translucent polycrystalline alumina[J]. Ceramics International, 2014, 40(1): 2109-2113. doi: 10.1016/j.ceramint.2013.07.125
    [11] ZHANG K, YUAN L, FU Y, et al. Microwave dielectric properties of Al2O3 ceramics co-doped with MgO and Nb2O5[J]. Journal of Materials Science Materials in Electronics, 2015, 26(9): 6526-6531. doi: 10.1007/s10854-015-3248-0
    [12] HUANG C L, WANG J J, HUANG C Y. Sintering behavior and microwave dielectric properties of nano alpha-alumina[J]. Materials Letters, 2005, 59(28): 3746-3749. doi: 10.1016/j.matlet.2005.06.053
    [13] LEE Y N, NAM H, NAM K W. Low temperature sintering of Al2O3 according to the amount of Bi2O3 additive considering economics[J]. Journal of Ceramic Processing Research, 2020, 21(1): 99-102. doi: 10.36410/jcpr.2020.21.1.99
    [14] ERKALFAH, ZULAL Misirli, BAYKARA T. Densification of alumina at 1250 ℃ with MnO2 and TiO2 additives[J]. Ceramics International, 1995, 21(5): 345-348. doi: 10.1016/0272-8842(95)96207-6
    [15] 张斌, 王焕平, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(Ⅰ)[J]. 材料研究学报, 2009, 23(05): 534-540. doi: 10.3321/j.issn:1005-3093.2009.05.015
    [16] 王焕平, 张斌, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(Ⅱ)[J]. 材料研究学报, 2010, 24(01): 37-43.
    [17] SHIGENO K, KATSUMURA H, KAGATA H, et al. Low temperature sintering of alumina by CuO-TiO2-Nb2O5 additives[J]. Key Engineering Materials, 2006, 320: 181-184. doi: 10.4028/www.scientific.net/KEM.320.181
    [18] YANG Y, MA M, ZHANG F, et al. Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid[J]. Journal of the European Ceramic Society, 2020, 40(15): 5504-5510. doi: 10.1016/j.jeurceramsoc.2020.06.068
    [19] XUE L, A, CHEN I, W. Low-temperature sintering of alumina with liquid-forming additives[J]. Journal of the American Ceramic Society, 1991, 74(8): 2011-2013. doi: 10.1111/j.1151-2916.1991.tb07825.x
    [20] SHIGENO K, KOJIMA E, FUJIMORI H. Improvement in the Low-temperature sintering performance and characteristics of alumina with CuO-TiO2-Nb2O5 additive by controlling the firing atmosphere[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7): 701-705. doi: 10.2497/jjspm.63.701
    [21] SHIGENO K, ASAKAWA T, KURAOKA Y, et al. Low-temperature sintering mechanism, dielectric, and thermal properties of CuO-TiO2-Nb2O5-containing Al2O3 ceramics featuring superior thermal conductivity[J]. Transactions of the Materials Research Society of Japan, 2019, 44(5): 203-210. doi: 10.14723/tmrsj.44.203
    [22] ALFORD N M, PENN S J. Sintered alumina with low dielectric loss[J]. Journal of Applied Physics, 1996, 80(10): 5895-5898. doi: 10.1063/1.363584
    [23] LI J, HAN Y, QIU T, et al. Effect of bond valence on microwave dielectric properties of (1-x)CaTiO3-x(Li0.5La0.5)TiO3 ceramics[J]. Materials Research Bulletin, 2012, 47(9): 2375-2379. doi: 10.1016/j.materresbull.2012.05.024
    [24] HUANG C L, WANG J J, HUANG C Y. Microwave dielectric properties of sintered alumina using nano‐scaled powders of α alumina and TiO2[J]. Journal of the American Ceramic Society, 2007, 90(5): 1487-1493. doi: 10.1111/j.1551-2916.2007.01557.x
    [25] IDDLES D M, BELL A J, MOULSON A J. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics[J]. Journal of Materials Science, 1992, 27(23): 6303-6310. doi: 10.1007/BF00576276
    [26] WANG Ying, TANG Tianliang, ZHANG, Junting, et al. Preparation and microwave dielectric properties of new low-loss NiZrTa2O8 ceramics[J]. Journal of Alloys and Compounds, 2019, 778(25): 576-578. doi: 10.1016/j.jallcom.2018.11.132
    [27] PENN S J, ALFORD N M, TEMPLETON A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J]. Journal of the American Ceramic Society, 1997, 80(7): 1885-1888. doi: 10.1111/j.1151-2916.1997.tb03066.x
    [28] 胡明哲, 周东祥, 龚树萍. 微波介质陶瓷介电性影响因素的研究[J]. 材料导报, 2004, 18(8): 7-10. doi: 10.3321/j.issn:1005-023X.2004.08.003
    [29] KIM W S, YOON K H, KIM E S. Microwave dielectric properties and far‐infrared reflectivity characteristics of the CaTiO3-Li(1/2)-3xSm(1/2)+xTiO3 ceramics[J]. Journal of the American Ceramic Society, 2010, 83(9): 2327-2329. doi: 10.1111/j.1151-2916.2000.tb01557.x
    [30] 严嵩, 唐媚, 林聪毅, 等. 85瓷的低温烧结及其介电性能[J]. 华东理工大学学报(自然科学版), 2017, 43(3): 352-357. doi: 10.14135/j.cnki.1006-3080.2017.03.009
  • 加载中
图(8)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回