[1] |
刘强, 钱军, 程志鹏, 等. 核壳结构Fe3O4@C改性PVDF柔性薄膜的介电性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(2): 179-188. doi: 10.14135/j.cnki.1006-3080.20190218002
|
[2] |
孙小曼, 李蔚, 刘会娇, 等. 不同氧化铝前驱体相转过程的研究[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 420-426.
|
[3] |
袁翠, 陈成, 李蔚. TiO2/MgO共掺对99氧化铝瓷结构和微波介电性能的影响[J]. 中国陶瓷, 2019, 55(10): 41-45. doi: 10.16521/j.cnki.issn.1001-9642.2019.10.007
|
[4] |
DANG M, LIN H, YAO X, et al. Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics[J]. Ceramics International, 2019, 45(18): 24244-24247. doi: 10.1016/j.ceramint.2019.08.135
|
[5] |
ZHANG J, YUE Z X, LUO Y, et al. MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture[J]. Ceramics International, 2018, 44(17): 21000-21003. doi: 10.1016/j.ceramint.2018.08.135
|
[6] |
TAO Z, LEI Y J, YIN J, et al. Effects of pores on dielectric breakdown of alumina ceramics under AC electric field[J]. Ceramics International, 2019, 45(11): 13951-13957. doi: 10.1016/j.ceramint.2019.04.093
|
[7] |
CHEN J M, WANG H P, FENG S Q, et al. Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics[J]. Ceramics International, 2011, 37(3): 989-993. doi: 10.1016/j.ceramint.2010.11.020
|
[8] |
WANG H, LI W, TERNSTROEM C, et al. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic[J]. Ceramics International, 2013, 39(2): 1583-1586. doi: 10.1016/j.ceramint.2012.07.110
|
[9] |
张康, 李蔚, 林慧兴. MgO/Eu2O3共掺杂对Al2O3陶瓷微波介电性能的影响[J]. 无机材料学报, 2015, 30(9): 984-988. doi: 10.15541/jim20150081
|
[10] |
YUAN L, WANG H, LIN H, et al. Effect of MgO/La2O3 co-doping on the microstructure, transmittance and microwave dielectric properties of translucent polycrystalline alumina[J]. Ceramics International, 2014, 40(1): 2109-2113. doi: 10.1016/j.ceramint.2013.07.125
|
[11] |
ZHANG K, YUAN L, FU Y, et al. Microwave dielectric properties of Al2O3 ceramics co-doped with MgO and Nb2O5[J]. Journal of Materials Science Materials in Electronics, 2015, 26(9): 6526-6531. doi: 10.1007/s10854-015-3248-0
|
[12] |
HUANG C L, WANG J J, HUANG C Y. Sintering behavior and microwave dielectric properties of nano alpha-alumina[J]. Materials Letters, 2005, 59(28): 3746-3749. doi: 10.1016/j.matlet.2005.06.053
|
[13] |
LEE Y N, NAM H, NAM K W. Low temperature sintering of Al2O3 according to the amount of Bi2O3 additive considering economics[J]. Journal of Ceramic Processing Research, 2020, 21(1): 99-102. doi: 10.36410/jcpr.2020.21.1.99
|
[14] |
ERKALFAH, ZULAL MISIRLI, BAYKARA T. Densification of alumina at 1250 ℃ with MnO2 and TiO2 additives[J]. Ceramics International, 1995, 21(5): 345-348. doi: 10.1016/0272-8842(95)96207-6
|
[15] |
张斌, 王焕平, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(Ⅰ)[J]. 材料研究学报, 2009, 23(5): 534-540. doi: 10.3321/j.issn:1005-3093.2009.05.015
|
[16] |
王焕平, 张斌, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(Ⅱ)[J]. 材料研究学报, 2010, 24(1): 37-43.
|
[17] |
SHIGENO K, KATSUMURA H, KAGATA H, et al. Low temperature sintering of alumina by CuO-TiO2-Nb2O5 additives[J]. Key Engineering Materials, 2006, 320: 181-184. doi: 10.4028/www.scientific.net/KEM.320.181
|
[18] |
YANG Y, MA M, ZHANG F, et al. Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid[J]. Journal of the European Ceramic Society, 2020, 40(15): 5504-5510. doi: 10.1016/j.jeurceramsoc.2020.06.068
|
[19] |
XUE L A, CHEN I W. Low-temperature sintering of alumina with liquid-forming additives[J]. Journal of the American Ceramic Society, 1991, 74(8): 2011-2013. doi: 10.1111/j.1151-2916.1991.tb07825.x
|
[20] |
SHIGENO K, KOJIMA E, FUJIMORI H. Improvement in the low-temperature sintering performance and characteristics of alumina with CuO-TiO2-Nb2O5 additive by controlling the firing atmosphere[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7): 701-705. doi: 10.2497/jjspm.63.701
|
[21] |
SHIGENO K, ASAKAWA T, KURAOKA Y, et al. Low-temperature sintering mechanism, dielectric, and thermal properties of CuO-TiO2-Nb2O5-containing Al2O3 ceramics featuring superior thermal conductivity[J]. Transactions of the Materials Research Society of Japan, 2019, 44(5): 203-210. doi: 10.14723/tmrsj.44.203
|
[22] |
ALFORD N M, PENN S J. Sintered alumina with low dielectric loss[J]. Journal of Applied Physics, 1996, 80(10): 5895-5898. doi: 10.1063/1.363584
|
[23] |
LI J, HAN Y, QIU T, et al. Effect of bond valence on microwave dielectric properties of (1-x)CaTiO3-x(Li0.5La0.5)TiO3 ceramics[J]. Materials Research Bulletin, 2012, 47(9): 2375-2379. doi: 10.1016/j.materresbull.2012.05.024
|
[24] |
HUANG C L, WANG J J, HUANG C Y. Microwave dielectric properties of sintered alumina using nano-scaled powders of α alumina and TiO2[J]. Journal of the American Ceramic Society, 2007, 90(5): 1487-1493. doi: 10.1111/j.1551-2916.2007.01557.x
|
[25] |
IDDLES D M, BELL A J, MOULSON A J. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics[J]. Journal of Materials Science, 1992, 27(23): 6303-6310. doi: 10.1007/BF00576276
|
[26] |
WANG Y, TANG T L, ZHANG J T, et al. Preparation and microwave dielectric properties of new low-loss NiZrTa2O8 ceramics[J]. Journal of Alloys and Compounds, 2019, 778(25): 576-578. doi: 10.1016/j.jallcom.2018.11.132
|
[27] |
PENN S J, ALFORD N M, TEMPLETON A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J]. Journal of the American Ceramic Society, 1997, 80(7): 1885-1888. doi: 10.1111/j.1151-2916.1997.tb03066.x
|
[28] |
胡明哲, 周东祥, 龚树萍. 微波介质陶瓷介电性影响因素的研究[J]. 材料导报, 2004, 18(8): 7-10. doi: 10.3321/j.issn:1005-023X.2004.08.003
|
[29] |
KIM W S, YOON K H, KIM E S. Microwave dielectric properties and far-infrared reflectivity characteristics of the CaTiO3-Li(1/2)-3xSm(1/2)+xTiO3 ceramics[J]. Journal of the American Ceramic Society, 2010, 83(9): 2327-2329. doi: 10.1111/j.1151-2916.2000.tb01557.x
|
[30] |
严嵩, 唐媚, 林聪毅, 等. 85瓷的低温烧结及其介电性能[J]. 华东理工大学学报(自然科学版), 2017, 43(3): 352-357. doi: 10.14135/j.cnki.1006-3080.2017.03.009
|