高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

欠膨胀超声速冲击射流的大涡模拟

郑枫弋 赖焕新

郑枫弋, 赖焕新. 欠膨胀超声速冲击射流的大涡模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210319001
引用本文: 郑枫弋, 赖焕新. 欠膨胀超声速冲击射流的大涡模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210319001
Zheng Fengyi, LAI Huanxin. Large Eddy Simulation of Underexpanded Supersonic Impinged Jets[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210319001
Citation: Zheng Fengyi, LAI Huanxin. Large Eddy Simulation of Underexpanded Supersonic Impinged Jets[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210319001

欠膨胀超声速冲击射流的大涡模拟

doi: 10.14135/j.cnki.1006-3080.20210319001
基金项目: 国家自然科学基金(51976061)资助项目
详细信息
    作者简介:

    郑枫弋(1995—),男,辽宁人,硕士生,主要研究方向:计算流体力学。E-mail:zfyprantdl@foxmail.com

    通讯作者:

    赖焕新,E-mail:hlai@ecust.edu.cn

  • 中图分类号: V211

Large Eddy Simulation of Underexpanded Supersonic Impinged Jets

  • 摘要: 使用大涡模拟方法研究喷管总压与环境压力之比${p_{{\rm{total}}}}/{p_0} = 4.03$、喷管高度与喷口直径之比$h/{D_j} = 2.08$的欠膨胀冲击射流,考察流场的特性与波系的结构。数值结果清晰地揭示了激波的位置与结构的周期性以及在冲击壁面与喷管唇部之间存在的反馈环。对脉动压力进行快速傅里叶变换的结果分析表明,反馈环与冲击单音具有相同的频率。通过对脉动速度进行本征正交分解,计算出各阶模态及其能量贡献率,详细讨论了湍流场中大尺度相干结构的产生、发展和演化现象。

     

  • 图  1  计算域设置

    Figure  1.  Computational domain

    图  2  不同涡环扰动计算结果对比

    Figure  2.  Comparison of calculation results by different vortex ring perturbation

    图  3  各组网格中心线上压力分布

    Figure  3.  Pressure distribution on centerline of every mesh

    图  4  中心线上物理量分布与实验对比

    Figure  4.  comparison of the value on centerline with experiment

    图  5  冲击射流激波的比较

    Figure  5.  comparison of the shock in impinging jet

    图  6  冲击射流时均流场计算与实验的比较

    Figure  6.  comparison of the shock in impinging jet

    图  7  一个流动震荡周期内的瞬态速度场,时间间隔Δt/T=0.25

    Figure  7.  Velocity magnitude plots, Δt/T=0.25 apart

    图  8  瞬态流场的Q判据等值面

    Figure  8.  Iso-surface of Q-criterion

    图  9  一个流动震荡周期内的瞬态脉动速度场

    Figure  9.  Velocity fluctuation plots

    图  10  一个流动震荡周期内的瞬态速度散度

    Figure  10.  Divergence of velocity plots

    图  11  中心线脉动压力频率分布

    Figure  11.  Frequency distribution of pressure fluctuation on centerline

    图  12  唇线脉动压力频率分布

    Figure  12.  Frequency distribution of pressure fluctuation on lip line

    图  13  5 212 Hz脉动压力幅值

    Figure  13.  Amplitude of pressure fluctuation at 5 212 Hz

    图  14  10 405 Hz脉动压力幅值

    Figure  14.  Amplitude of pressure fluctuation at 10 405 Hz

    图  15  POD能量贡献率

    Figure  15.  Energy contribution rate of POD modes

    图  16  POD累计能量贡献率

    Figure  16.  Cumulated energy contribution rate of POD modes

    图  17  1、3、4、8阶脉动速度模态

    Figure  17.  Velocity fluctuation plots of 1st, 3rd, 4th, 8th POD mode

  • [1] 徐惊雷, 徐忠, 肖敏, 等. 冲击射流的研究概述[J]. 力学与实践, 1999, 21(06): 3-5.
    [2] MITCHELL D M, HONNERY D R, SORIA J. The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren[J]. Journal of Visualization, 2012, 15(4): 333-341. doi: 10.1007/s12650-012-0139-9
    [3] MARSH A H. Noise Measurements Around a Subsonic Air Jet Impinging on a Plane, Rigid Surface[J]. Journal of the Acoustical Society of America, 1961, 33(8): 1065-1066. doi: 10.1121/1.1908894
    [4] WANGER F R. The sound and flow field of an axially symmetric free jet upon impact on a wall[R]. Washington: NASA, 1971.
    [5] NEUWERTH G. Acoustic feedback phenomena of the subsonic and hypersonic free jet impinging on a foreign body[R]. Washington: NASA, 1974.
    [6] TAM C K W, AHUJA K K. Theoretical model of discrete tone generation by impinging jets[J]. Journal of Fluid Mechanics, 1990, 214: 67-87. doi: 10.1017/S0022112090000052
    [7] HO C, NOSSEIR N S. Dynamics of an impinging jet. Part 1. The feedback phenomenon[J]. Journal of Fluid Mechanics, 1981, 105: 119-142. doi: 10.1017/S0022112081003133
    [8] ALVI F, IYER K. Mean and unsteady flowfield properties of supersonic impinging jets with lift plates[C]// 5th AIAA/CEAS Aeroacoustics Conference. Bellevue: American Institute of Aeronautics and Astronautics, 1999: 1-25.
    [9] POWELL A. The sound-producing oscillations of round underexpanded jets impinging on normal plates[J]. The Journal of the Acoustical Society of America, 1988, 83(2): 515-533. doi: 10.1121/1.396146
    [10] HENDERSON B, BRIDGES J, WERNET M. An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets[J]. Journal of Fluid Mechanics, 2005, 542: 115-137. doi: 10.1017/S0022112005006385
    [11] 刘海. 超声速欠膨胀冲击射流的大涡模拟[D]. 清华大学, 2010.
    [12] 刘海, 姚朝晖. 超声速高度欠膨胀冲击射流的大涡模拟[J]. 空气动力学学报, 2012, 30(1): 80-85. doi: 10.3969/j.issn.0258-1825.2012.01.014
    [13] NICOUD F, DUCROS F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor[J]. Flow Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001
    [14] BOGEY C, BAILLY C. Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise[J]. AIAA Journal, 2005, 43(5): 1000-1007. doi: 10.2514/1.7465
    [15] 许聪, 刘琪麟, 赖焕新. 亚音速喷流出口扰动对湍流与声场模拟的影响[J/OL]. 华东理工大学学报(自然科学版), [2021-05-05]. https://doi.org/10.14135/j.cnki.1006-3080.20200603001.
    [16] HUNT J, WRAY A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]// Proceedings of the Summer Program 1988. California: Center for Turbulence Research, 1988: 193-208.
    [17] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. doi: 10.1090/qam/910462
    [18] SIROVICH L. Turbulence and the dynamics of coherent structures. II. Symmetries and transformations[J]. Quarterly of Applied Mathematics, 1987, 45(3): 573-582. doi: 10.1090/qam/910463
  • 加载中
图(17)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  32
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 网络出版日期:  2021-07-15

目录

    /

    返回文章
    返回