高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响

苏凡 张玲 李春忠

苏凡, 张玲, 李春忠. 氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210315001
引用本文: 苏凡, 张玲, 李春忠. 氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210315001
SU Fan, ZHANG Ling, LI Chunzhong. Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210315001
Citation: SU Fan, ZHANG Ling, LI Chunzhong. Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210315001

氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响

doi: 10.14135/j.cnki.1006-3080.20210315001
基金项目: 国家自然科学基金(21878092,21838003),上海市教育委员会科研创新计划项目,上海市优秀学术人(19XD1401400)
详细信息
    作者简介:

    苏凡(1996—),男,河北唐山人,硕士生,研究方向为氮化硼增强导热复合材料研究与应用。E-mail:sufan7726@163.com

    通讯作者:

    张玲,E-mail:zlingzi@ecust.edu.cn

    李春忠,E-mail:czli@ecust.edu.cn

  • 中图分类号: TB33

Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites

  • 摘要: 采用两步法将片状氮化硼(BN)和两种尺寸的球形氧化铝(纳米级Al2O3:Nano-Al2O3;微米级Al2O3:Micro-Al2O3)引入尼龙6/聚丙烯(PA6/PP)合金中制备高导热的BN/Nano-Al2O3/Micro-Al2O3/PA6/PP复合材料。借助加工过程中的剪切力以及PP相的体积排斥,发现BN片和Al2O3球在PA6相中均匀分散、取向和连接,小尺寸Nano-Al2O3插入BN片间的缝隙中而大尺寸Micro-Al2O3嵌入并改变BN片的取向,二者共同辅助BN形成了三维导热网络,减少了各向异性。当Nano-Al2O3∶Micro-Al2O3质量比为7.5∶7.5时,BN-25/Nano-Al2O3-7.5/Micro-Al2O3-7.5/PA6/PP复合材料的导热率达到最大,面内导热率为1.46 Wm−1·K−1,面外导热率为1.39 Wm−1·K−1,并且在应用散热实验中,使得LED工作温度显著降低,具有很好的应用性。

     

  • 图  1  BN/Al2O3/PA6/PP复合材料制备流程示意图

    Figure  1.  Schematic diagram of BN/Al2O3/PA6/PP composite preparation process

    图  2  (a) BN、(b) Nano-Al2O3和(c) Micro-Al2O3的微观形貌和(d)粒径分布

    Figure  2.  The microscopic morphology of (a) BN, (b) Nano-Al2O3, (c) Micro-Al2O3 and particle size distribution (d)

    图  3  复合材料径向断面图(a)、(b)、(c)、(d);轴向断面刻蚀图(e)、(f)、(g)、(h)

    Figure  3.  Radial sectional graphs of composite materials (a), (b), (c), (d); Axial section etching of composite materials (e), (f), (g), (h)

    图  4  (a) BN-25/Nano-Al2O3/PA6/PP复合材料导热率,(b) BN/Micro-Al2O3/PA6/PP复合材料导热率,(c) BN-25/Nano-Al2O3/Micro-Al2O3/PA6/PP复合材料导热率和各向异性度

    Figure  4.  (a) thermal conductivity of BN-25/Nano-Al2O3/PA6/PP composites, (b) thermal conductivity of BN/Micro-Al2O3/PA6/PP composites, (c) thermal conductivity and anisotropy of BN-25/Nano-Al2O3/Micro-Al2O3/PA6/PP composites

    图  5  BN-25/Al2O3-15/PA6/PP复合材料的拉伸强度、拉伸模量和断裂伸长率

    Figure  5.  Tensile strength, tensile modulus and elongation at break of BN-25/Al2O3-15/PA6/PP composites

    图  6  BN/nm Al2O3/μm Al2O3/PA6/PP导热机理示意图

    Figure  6.  Schematic diagram of thermal conduction mechanism of BN/nm Al2O3/μm Al2O3/PA6/PP

    图  7  热红外测试样品传热升温测试

    Figure  7.  Heat transfer and temperature rise test of thermal infrared test sample

    图  8  LED散热测试

    Figure  8.  LED heat dissipation test

  • [1] WU Z, XU C, MA C, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19): 1900199. doi: 10.1002/adma.201900199
    [2] ZHANG Y, HAN H, WANG N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435. doi: 10.1002/adfm.201500990
    [3] YAN F, LIU L, LI M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105530. doi: 10.1016/j.compositesa.2019.105530
    [4] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [5] ZOU W, BASHARAT M, DAR S U, et al. Preparation and performances of novel polyphosphazene-based thermally conductive composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 145-153. doi: 10.1016/j.compositesa.2019.01.024
    [6] KIM Y K, CHUNG J Y, LEE J G, et al. Synergistic effect of spherical Al2O3 particles and BN nanoplates on the thermal transport properties of polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 184-191. doi: 10.1016/j.compositesa.2017.03.030
    [7] ZHAN Y, REN Y, WAN X, et al. Dielectric thermally conductive and stable poly(arylene ether nitrile) composites filled with silver nanoparticles decorated hexagonal boron nitride[J]. Ceramics International, 2018, 44(2): 2021-2029. doi: 10.1016/j.ceramint.2017.10.147
    [8] ZHANG X, ZHANG J, ZHANG X, et al. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC[J]. Composites Science and Technology, 2017, 150: 217-226. doi: 10.1016/j.compscitech.2017.07.019
    [9] 吴唯, 刘建华, 刘江, 等. h-BN与Al2O3复配填充共聚甲醛导热材料的制备及性能[J]. 华东理工大学学报(自然科学版), 2019, 45(3): 419-423.
    [10] ERB R M, LIBANORI R, ROTHFUCHS N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science, 2012, 335(6065): 199-204. doi: 10.1126/science.1210822
    [11] LIU Y, LU M, WU K, et al. Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4[J]. Composites Science and Technology, 2019, 174: 1-10. doi: 10.1016/j.compscitech.2019.02.005
    [12] SHI Y, MA W, WU L, et al. Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites[J]. Journal of Applied Polymer Science, 2019, 136(37): 47951. doi: 10.1002/app.47951
    [13] LI B, WU D, LU K, et al. Tailored interphase and thermal interface resistance of self-assembled thermally reduced graphene oxide–polyamide hybrid/epoxy composites with enhanced thermal conductivity[J]. Journal of Applied Polymer Science, 2019, 136(31): 47826. doi: 10.1002/app.47826
    [14] ZIZHEN L, CONGLIANG H, YINSHI L. A generalized thermal conductivity model for nanoparticle packed bed considering particle deformation[J]. International Journal of Heat and Mass Transfer, 2019, 129: 28-36. doi: 10.1016/j.ijheatmasstransfer.2018.09.067
    [15] TESSEMA A, ZHAO D, MOLL J, et al. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites[J]. Polymer Testing, 2017, 57: 101-106. doi: 10.1016/j.polymertesting.2016.11.015
    [16] XIAO C, TANG Y, CHEN L, et al. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 330-340. doi: 10.1016/j.compositesa.2019.03.044
    [17] ZENG X, YAO Y, GONG Z, et al. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement[J]. Small, 2015, 11(46): 6205-6213. doi: 10.1002/smll.201502173
    [18] HUANG T, LI Y, CHEN M, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198: 108322. doi: 10.1016/j.compscitech.2020.108322
    [19] WANG Z, LI Q, CHEN Z, et al. Enhanced Comprehensive Properties of Nylon-6 Nanocomposites by Aniline-Modified Boron Nitride Nanosheets[J]. Industrial and Engineering Chemistry Research, 2018, 57(32): 11005-11013. doi: 10.1021/acs.iecr.8b02005
    [20] ZHANG X, WU W, LIU J, et al. Effect of carbon black self-networking on surface-morphological and electrical properties of immiscible polypropylene/polyamide 6 blends[J]. Materials Research Express, 2019, 6(3): 035314.
    [21] ZHANG L, LI X, DENG H, et al. Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 1-7. doi: 10.1016/j.compositesa.2018.09.009
    [22] OH H, KIM J. Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity[J]. Composites Science and Technology, 2019, 172: 153-162. doi: 10.1016/j.compscitech.2019.01.021
  • 加载中
图(8)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 网络出版日期:  2021-06-29

目录

    /

    返回文章
    返回