高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响

苏凡 张玲 李春忠

苏凡, 张玲, 李春忠. 氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响[J]. 华东理工大学学报(自然科学版), 2022, 48(2): 165-172. doi: 10.14135/j.cnki.1006-3080.20210315001
引用本文: 苏凡, 张玲, 李春忠. 氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响[J]. 华东理工大学学报(自然科学版), 2022, 48(2): 165-172. doi: 10.14135/j.cnki.1006-3080.20210315001
SU Fan, ZHANG Ling, LI Chunzhong. Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites[J]. Journal of East China University of Science and Technology, 2022, 48(2): 165-172. doi: 10.14135/j.cnki.1006-3080.20210315001
Citation: SU Fan, ZHANG Ling, LI Chunzhong. Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites[J]. Journal of East China University of Science and Technology, 2022, 48(2): 165-172. doi: 10.14135/j.cnki.1006-3080.20210315001

氮化硼和不同尺寸氧化铝复配对尼龙6/聚丙烯复合材料导热性能的影响

doi: 10.14135/j.cnki.1006-3080.20210315001
基金项目: 国家自然科学基金(21878092,21838003);上海市教育委员会科研创新计划项目;上海市优秀学术带头人(19XD1401400)
详细信息
    作者简介:

    苏凡:苏 凡(1996—),男,河北唐山人,硕士生,研究方向为氮化硼增强导热复合材料研究与应用。E-mail:sufan7726@163.com

    通讯作者:

    张 玲,E-mail:zlingzi@ecust.edu.cn

    李春忠,E-mail:czli@ecust.edu.cn

  • 中图分类号: TB33

Effect of Boron Nitride and Alumina of Different Sizes on Thermal Conductivity of Nylon 6/Polypropylene Composites

  • 摘要: 采用两步法将片状氮化硼(BN)和两种尺寸的球形氧化铝(纳米级Al2O3:Nano-Al2O3;微米级Al2O3:Micro-Al2O3)引入到尼龙6/聚丙烯(PA6/PP)合金中制备高导热的BN/Nano-Al2O3/Micro-Al2O3/PA6/PP复合材料。借助加工过程中的剪切力以及PP相的体积排斥作用,发现BN片和Al2O3球在PA6相中均匀地分散、取向和连接,小尺寸的Nano-Al2O3插入BN片间的缝隙中,而大尺寸的Micro-Al2O3嵌入并改变BN片的取向,二者共同辅助BN形成了三维导热网络,并减少了各向异性。与质量分数为25%的BN复配,当Nano-Al2O3和Micro-Al2O3质量分数分别为7.5%(即Nano-Al2O3-7.5和Micro-Al2O3-7.5)时,BN/Nano-Al2O3-7.5/Micro-Al2O3-7.5/PA6/PP复合材料的热导率达到最大,面内热导率为1.46 W/(m·K),面外热导率为1.39 W/(m·K)。在LED灯散热实验中,复合材料能使LED工作温度显著降低,说明其具有很好的应用性。

     

  • 图  1  BN/Al2O3/PA6/PP复合材料制备流程示意图

    Figure  1.  Schematic diagram of BN/Al2O3/PA6/PP composite preparation process

    图  2  BN (a)、Nano-Al2O3 (b) 和Micro-Al2O3 (c) 的微观形貌和粒径分布(d)

    Figure  2.  Microscopic morphology of BN (a), Nano-Al2O3 (b), Micro-Al2O3 (c) and particle size distribution (d)

    图  3  复合材料径向断面图((a)、(b)、(c)、(d))和轴向断面刻蚀图((e)、(f)、(g)、(h))

    Figure  3.  Radial sectional graphs ((a), (b), (c), (d)) and axial section etching ((e), (f), (g), (h)) of composite materials

    图  4  BN/Al2O3/PA6/PP复合材料的热导率和各向异性度

    Figure  4.  Thermal conductivity and anisotropy of BN/Al2O3/PA6/PP composite materials

    图  5  不同复合材料的拉伸强度、拉伸模量和断裂伸长率

    Figure  5.  Tensile strength, tensile modulus and elongation at break of the different composite materials

    图  6  BN/Nano-Al2O3/Micro- Al2O3/PA6/PP导热机理示意图

    Figure  6.  Schematic diagram of thermal conduction mechanism of BN/Nano- Al2O3/Micro- Al2O3/PA6/PP

    图  7  热红外测试样品传热和升温测试

    Figure  7.  Heat transfer and temperature rise test of thermal infrared test sample

    图  8  LED散热测试

    Figure  8.  LED heat dissipation test

  • [1] WU Z H, XU C, MA C Q, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19): 1900199. doi: 10.1002/adma.201900199
    [2] ZHANG Y, HAN H X, WANG N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435. doi: 10.1002/adfm.201500990
    [3] YAN F, LIU L, LI M J, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites[J]. Composites: Part A. Applied Science and Manufacturing, 2019, 125: 105530. doi: 10.1016/j.compositesa.2019.105530
    [4] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [5] ZOU W Q, BASHARAT M, DAR S U, et al. Preparation and performances of novel polyphosphazene-based thermally conductive composites[J]. Composites: Part A. Applied Science and Manufacturing, 2019, 119: 145-153. doi: 10.1016/j.compositesa.2019.01.024
    [6] KIM Y K, CHUNG J Y, LEE J G, et al. Synergistic effect of spherical Al2O3 particles and BN nanoplates on the thermal transport properties of polymer composites[J]. Composites: Part A. Applied Science and Manufacturing, 2017, 98: 184-191. doi: 10.1016/j.compositesa.2017.03.030
    [7] ZHAN Y Q, REN Y, WAN X Y, et al. Dielectric thermally conductive and stable poly(arylene ether nitrile) composites filled with silver nanoparticles decorated hexagonal boron nitride[J]. Ceramics International, 2018, 44(2): 2021-2029. doi: 10.1016/j.ceramint.2017.10.147
    [8] ZHANG X M, ZHANG J J, ZHANG X L, et al. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC[J]. Composites Science and Technology, 2017, 150: 217-226. doi: 10.1016/j.compscitech.2017.07.019
    [9] 吴唯, 刘建华, 刘江, 等. h-BN与Al2O3复配填充共聚甲醛导热材料的制备及性能[J]. 华东理工大学学报(自然科学版), 2019, 45(3): 419-423.
    [10] ERB R M, LIBANORI R, ROTHFUCHS N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science, 2012, 335(6065): 199-204. doi: 10.1126/science.1210822
    [11] LIU Y C, LU M P, WU K, et al. Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4[J]. Composites Science and Technology, 2019, 174: 1-10. doi: 10.1016/j.compscitech.2019.02.005
    [12] SHI Y Y, MA W S, WU L, et al. Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites[J]. Journal of Applied Polymer Science, 2019, 136(37): 47951. doi: 10.1002/app.47951
    [13] LI B, WU D, LU K Y, et al. Tailored interphase and thermal interface resistance of self-assembled thermally reduced graphene oxide–polyamide hybrid/epoxy composites with enhanced thermal conductivity[J]. Journal of Applied Polymer Science, 2019, 136(31): 47826. doi: 10.1002/app.47826
    [14] ZIZHEN L, CONGLIANG H, YINSHI L. A generalized thermal conductivity model for nanoparticle packed bed considering particle deformation[J]. International Journal of Heat and Mass Transfer, 2019, 129: 28-36. doi: 10.1016/j.ijheatmasstransfer.2018.09.067
    [15] TESSEMA A, ZHAO D, MOLL J, et al. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites[J]. Polymer Testing, 2017, 57: 101-106. doi: 10.1016/j.polymertesting.2016.11.015
    [16] XIAO C, TANG Y L, CHEN L, et al. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure[J]. Composites: Part A. Applied Science and Manufacturing, 2019, 121: 330-340. doi: 10.1016/j.compositesa.2019.03.044
    [17] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small, 2015, 11(46): 6205-6213. doi: 10.1002/smll.201502173
    [18] HUANG T Q, LI Y W, CHEN M, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198: 108322. doi: 10.1016/j.compscitech.2020.108322
    [19] WANG Z J, LI Q, CHEN Z M, et al. Enhanced comprehensive properties of nylon-6 nanocomposites by aniline-modified boron nitride nanosheets[J]. Industrial and Engineering Chemistry Research, 2018, 57(32): 11005-11013. doi: 10.1021/acs.iecr.8b02005
    [20] ZHANG X W, WU W, LIU J, et al. Effect of carbon black self-networking on surface-morphological and electrical properties of immiscible polypropylene/polyamide 6 blends[J]. Materials Research Express, 2019, 6(3): 035314.
    [21] ZHANG L, LI X, DENG H, et al. Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers[J]. Composites: Part A. Applied Science and Manufacturing, 2018, 115: 1-7. doi: 10.1016/j.compositesa.2018.09.009
    [22] OH H, KIM J. Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity[J]. Composites Science and Technology, 2019, 172: 153-162. doi: 10.1016/j.compscitech.2019.01.021
  • 加载中
图(8)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  165
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回