高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

甲烷催化双重整过程模拟

庄炜杰 仇鹏 曾泽李 代正华 王辅臣

庄炜杰, 仇鹏, 曾泽李, 代正华, 王辅臣. 甲烷催化双重整过程模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210313004
引用本文: 庄炜杰, 仇鹏, 曾泽李, 代正华, 王辅臣. 甲烷催化双重整过程模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210313004
ZHUANG Weijie, QIU Peng, ZENG Zeli, DAI Zhenghua, WANG Fuchen. Simulation of Methane Catalytic Bi-Reforming Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210313004
Citation: ZHUANG Weijie, QIU Peng, ZENG Zeli, DAI Zhenghua, WANG Fuchen. Simulation of Methane Catalytic Bi-Reforming Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210313004

甲烷催化双重整过程模拟

doi: 10.14135/j.cnki.1006-3080.20210313004
基金项目: 新疆生产建设兵团南疆重点产业创新发展支撑计划(2019DB002);国家自然科学基金(21776087);上海市优秀技术带头人(19XD1434800)
详细信息
    作者简介:

    庄炜杰(1996—),男,上海人,硕士生,研究方向为甲烷双重整过程研究。E-mail:zwjstc0016@163.com

    通讯作者:

    代正华,E-mail:chinadai@ecust.edu.cn

  • 中图分类号: TE646

Simulation of Methane Catalytic Bi-Reforming Process

  • 摘要: 以甲烷重整转化炉为研究对象,基于动力学模型考察了温度、压力与进料比对甲烷双重整反应过程的影响。在p=3.2 MPa下,CH4、H2O与CO2的转化率都随着温度的升高而增大。与甲烷水蒸气重整反应相比,甲烷二氧化碳重整反应的反应温度更高,CO2于650 ℃开始进行转化。随着压力的增大,CH4、H2O和CO2的转化率都快速下降。当压力达到3.5 MPa时,CH4、H2O与CO2的转化率均小于40%,但压力对n(H2)/n(CO)的影响不明显。反应体系中CO2的增加有利于提高CH4转化率,但H2O转化率大幅度降低。通过进料比与反应温度的分析表明,可以通过调节温度和进料中H2O和CO2的相对浓度来调整反应产物的n(H2)/n(CO)以进行后续的工业生产。

     

  • 图  1  甲烷双重整反应器示意图

    Figure  1.  Schematic diagram of methane bi-reforming reactor

    图  2  甲烷双重整反应过程模拟图

    Figure  2.  Simulation diagram of methane bi-reforming reaction process

    图  3  温度对甲烷双重整反应产物的影响

    Figure  3.  Effect of temperature on the products of methane bi-reforming reaction

    图  4  压力对甲烷双重整反应产物的影响

    Figure  4.  Effect of pressure on the products of methane bi-reforming reaction

    图  5  不同n(CO2)/n(CH4)对甲烷双重整反应产物的影响(n(CH4)∶n(H2O)=1∶1)

    Figure  5.  Effect of different n(CO2)/n(CH4) on the products of methane bi-reforming reaction (n(CH4)∶n(H2O)=1∶1)

    图  6  不同n(H2O)/n(CH4)对甲烷双重整反应产物的影响(n(CH4)∶n(CO2)=1∶1)

    Figure  6.  Effect of different n(H2O)/n(CH4) on the products of methane bi-reforming reaction (n(CH4)∶n(CO2)=1∶1)

    表  1  反应速率平衡常数[12]

    Table  1.   Reaction rate equilibrium constants

    Keq,1Keq,2Keq,3
    ${10}^{\left(\dfrac{-11\;650}{T}+13.076\right)}$${10}^{\left(\dfrac{-9\;740}{T}+11.312\right)}$${ {10}^{\left(\dfrac{1\;910}{T}-1.764\right)} }$
    下载: 导出CSV

    表  2  动力学速率常数[12]

    Table  2.    Kinetic rate constants

    k1k2k3
    $ 2.69\times {10}^{16}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-226\;400}{{R}T}\right) $$ 3.44\times {10}^{15}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-210\;400}{{R}T}\right) $$ 1.95\times {10}^{9}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-67\;130}{{R}T}\right) $
    下载: 导出CSV

    表  3  组分吸附常数[12]

    Table  3.   Adsorption constants

    KCH4KCOKH2KH2O
    $ 2.68\times {10}^{-4}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{38\;280}{{R}T}\right) $$ 8.23\times {10}^{-5}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{70\;650}{{R}T}\right) $$ 6.12\times {10}^{-9}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{82\;900}{{R}T}\right) $$ 2.09\times {10}^{5}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-88\;680}{{R}T}\right) $
    下载: 导出CSV

    表  4  进料气的基本条件

    Table  4.   Basic conditions of feed gas

    Feed gasφ/%Flow rate/
    CH4C2H6C3H8C4H10CO2H2N2ArO2(Nm3·h−1
    Natural gas87.323.571.370.281.521.824.020.1831468
    Fuel gas92.593.791.370.31.40.553132
    Air17821
    下载: 导出CSV

    表  5  模拟结果与甲烷蒸气重整工厂数据[23]

    Table  5.   Simulation results and methane steam reforming plant data

    Itemφ(CH4)1)/%Tube pressure drop/MPaToutlet
    Simulation results27.60.241697
    Plant data29.40.223695
    1) in exit dry gas
    下载: 导出CSV

    表  6  模拟结果与甲烷双重整实验数据[24]

    Table  6.   Simulation results and experimental data of methane bi-reforming

    ItemX(CH4)/%X(CO2)/%n(H2)/n(CO)
    Simulation results97.779.21.95
    Plant data98.283.51.98
    下载: 导出CSV
  • [1] 中国人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
    [2] 杨曹立, 高瑞, 代正华, 等. 气态烃非催化部分氧化烧嘴端面传热过程研究[J]. 华东理工大学学报(自然科学版), 2021, 47(01): 11-16.
    [3] 厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程, 2019, 49(7): 1-7. doi: 10.3969/j.issn.1002-106X.2019.07.001
    [4] 李文兵, 齐智平. 甲烷制氢技术研究进展[J]. 天然气工业, 2005, 25(2): 165-168. doi: 10.3321/j.issn:1000-0976.2005.02.053
    [5] 于遵宏, 朱炳辰, 沈才大. 大型合成氨厂工艺工程分析[M]. 北京: 中国石化出版社, 1993.
    [6] 米建新, 刘丹, 张晓欠, 等. 甲烷二氧化碳干气重整催化剂研究进展[J]. 煤化工, 2019, 47(1): 6-9.
    [7] 徐军科, 李兆静, 汪吉辉, 等. 甲烷干重整催化剂Ni/Al2O3表面积炭表征与分析[J]. 物理化学学报, 2009, 25(2): 253-260. doi: 10.3866/PKU.WHXB20090210
    [8] ESTEPHANE J, AOUAD S, HANY S, et al. CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9201-9208. doi: 10.1016/j.ijhydene.2015.05.147
    [9] FAROOQI A S, YUSUF M, ABDULLAH B. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2021 doi: 10.1016/j.ijhydene.2021.01.049
    [10] 李春林, 伏义路, 屠兢. 水蒸气对Ni/Ce-Zr-Al-OX催化剂上CO2重整CH4的影响[J]. 催化学报, 2004, 25(6): 450-454. doi: 10.3321/j.issn:0253-9837.2004.06.007
    [11] OEZKARA S. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12821-12828. doi: 10.1016/j.ijhydene.2010.08.134
    [12] JANG W J, JEONG D W, SHIM J O, et al. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application[J]. Applied Energy, 2016, 173: 80-91. doi: 10.1016/j.apenergy.2016.04.006
    [13] WU K T, YU C T, CHEIN R Y. Numerical modeling on catalytic tri-reforming reaction of methane for syngas production[J]. Energy Procedia, 2017, 105: 4198-4203. doi: 10.1016/j.egypro.2017.03.895
    [14] MINETTE F, WILDE J D. Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors[J]. Chemical Engineering Journal, 2020, 407: 127218.
    [15] ITKULOVA S S, ZAKUMBAEVA G D, NURMAKANOV Y Y, et al. Syngas production by bireforming of methane over Co-based alumina-supported catalysts[J]. Catalysis Today, 2014, 228: 194-198. doi: 10.1016/j.cattod.2014.01.013
    [16] 任盼盼. 新型镍基甲烷水蒸气-二氧化碳双重整催化剂的制备与性能研究[D]. 辽宁: 大连理工大学, 2016.
    [17] SHAKOURI M, HU Y, LEHOUX R, et al. CO2 conversion through combined steam and CO2 reforming of methane reactions over Ni and Co catalysts[J]. The Canadian Journal of Chemical Engineering, 2020, 99(1): 153-165.
    [18] 黄德明. 合成氨生产工艺学[M]. 北京: 烃加工出版社, 1989.
    [19] JIANGUO XU, GILBERT, et al. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. Aiche Journal, 1989, 35(1): 88-96. doi: 10.1002/aic.690350109
    [20] DONAZZI A, BERETTA A, GROPPI G, et al. Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst Part II: Role of CO2 reforming[J]. Journal of Catalysis, 2008, 255(2): 259-268. doi: 10.1016/j.jcat.2008.02.010
    [21] HE Z, WILDE J D. Numerical simulation of commercial scale autothermal chemical looping reforming and bi-reforming for syngas production[J]. Chemical Engineering Journal, 2020(1): 153-165.
    [22] MOK L F. Sensitivity study of energy consumption in ammonia plant operation[D]. University of California, Berkeley, 1982.
    [23] YU Z, CAO E, WANG Y, et al. Simulation of natural gas steam reforming furnace[J]. Fuel Processing Technology, 2006, 87(8): 695-704. doi: 10.1016/j.fuproc.2005.11.008
    [24] LI W, ZHAO Z, REN P, et al. Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane[J]. Rsc Advances, 2015, 5: 100865-100872. doi: 10.1039/C5RA22237K
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 网络出版日期:  2021-06-22

目录

    /

    返回文章
    返回