Simulation of Methane Catalytic Bi-Reforming Process
-
摘要: 以甲烷重整转化炉为研究对象,基于动力学模型,考察了温度、压力与进料物质的量之比对甲烷双重整反应过程的影响。结果表明:在压力3.2 MPa下,甲烷、水蒸气与二氧化碳的转化率均随温度的升高而增大。与甲烷水蒸气重整反应相比,甲烷二氧化碳重整反应的反应温度更高,二氧化碳于650 ℃开始进行转化。随着压力的增大,甲烷、水蒸气和二氧化碳的转化率都快速下降。当压力达到3.5 MPa时,甲烷、水蒸气与二氧化碳的转化率均小于40%,但压力对氢气与一氧化碳的物质的量之比的影响不明显。反应体系中二氧化碳的增加有利于提高甲烷转化率,但会使水蒸气转化率大幅度降低。 因此可以通过调节温度和进料中水蒸气和二氧化碳的物质的量之比来调整反应产物中氢气与一氧化碳的物质的量之比。Abstract: The effects of temperature, pressure and feed ratio on a CH4 reformer were studied based on a kinetic model. The conversion rates of CH4, H2O and CO2 all increased with the increase of temperature at p=3.2 MPa. Compared with the steam reforming of CH4, the reaction temperature of CH4 and CO2 reforming was higher and CO2 began to transform at 650 ℃. The effect of temperature on the reaction rate of dry reforming of CH4 was considerable with a relatively high reaction temperature and pressure. With the increase of pressure, the conversion rates of CH4, H2O and CO2 decreased rapidly. When the pressure reached 3.5 MPa, the conversion rates of CH4, H2O and CO2 reduced to less than 40%. However, the influence of pressure on n(H2)∶n(CO) was minimal. The increase of CO2 in the reaction system was beneficial for improving the conversion rate of CH4, but significantly reduced the conversion rate of H2O at p=3.2 MPa. CO2 conversion was enhanced rapidly at first and then remained stable with the increase of n(CO2)∶n(CH4). CH4 and H2O conversion were both increased with the increase of n(H2O)∶n(CH4). The results show that n(H2)∶n(CO) can be optimized by adjusting the temperature and the relative concentration of H2O and CO2 in the feed gas to facilitate the subsequent industrialization.
-
Key words:
- methane /
- bi-reforming /
- feed ratio /
- catalyst /
- conversion rate
-
Keq,1 Keq,2 Keq,3 ${10}^{\left(-11\;650/T+13.076\right)}$ ${10}^{\left(-9\;740/T+11.312\right)}$ ${ {10}^{\left(1\;910/T-1.764\right)} }$ k1 k2 k3 $ 2.69\times {10}^{16}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-226\;400}{{R}T}\right) $ $ 3.44\times {10}^{15}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-210\;400}{{R}T}\right) $ $ 1.95\times {10}^{9}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-67\;130}{{R}T}\right) $ $K_{\rm{ {{CH}_4} } }$ $K_{\rm{{CO}}} $ $K_{\rm{{H_{2}}}} $ $K_{\rm{{H_{2}O}}} $ $ 2.68\times {10}^{-4}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{38\;280}{{R}T}\right) $ $ 8.23\times {10}^{-5}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{70\;650}{{R}T}\right) $ $ 6.12\times {10}^{-9}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{82\;900}{{R}T}\right) $ $ 2.09\times {10}^{5}\mathrm{e}\mathrm{x}\mathrm{p}\left(\dfrac{-88\;680}{{R}T}\right) $ 表 4 进料气的基本条件
Table 4. Basic conditions of feed gas
Feed gas φ/% Flow rate/(m3·h−1) CH4 C2H6 C3H8 C4H10 CO2 H2 N2 Ar O2 Natural gas 87.32 3.57 1.37 0.28 1.52 1.82 4.02 0.18 — 31468 Fuel gas 92.59 3.79 1.37 0.30 1.40 — 0.55 — — 3132 Air — — — — 1.00 — 78.00 — 21.00 表 5 甲烷水蒸气重整模拟结果与工厂数据对比
Table 5. Comparion of simulation results and plant data of methane steam reforming
Item φ(CH4)1)/% Tube pressure drop/MPa Toutlet Simulation value 27.6 0.241 697 Literature[23] 29.4 0.223 695 1) Volume fraction of CH4 in dry gas at the outlet -
[1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. [2] 杨曹立, 高瑞, 代正华, 等. 气态烃非催化部分氧化烧嘴端面传热过程研究[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 11-16. [3] 厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程, 2019, 49(7): 1-7. doi: 10.3969/j.issn.1002-106X.2019.07.001 [4] 李文兵, 齐智平. 甲烷制氢技术研究进展[J]. 天然气工业, 2005, 25(2): 165-168. doi: 10.3321/j.issn:1000-0976.2005.02.053 [5] 于遵宏, 朱炳辰, 沈才大. 大型合成氨厂工艺工程分析[M]. 北京: 中国石化出版社, 1993. [6] 米建新, 刘丹, 张晓欠, 等. 甲烷二氧化碳干气重整催化剂研究进展[J]. 煤化工, 2019, 47(1): 6-9. [7] 徐军科, 李兆静, 汪吉辉, 等. 甲烷干重整催化剂Ni/Al2O3表面积炭表征与分析[J]. 物理化学学报, 2009, 25(2): 253-260. doi: 10.3866/PKU.WHXB20090210 [8] ESTEPHANE J, AOUAD S, HANY S, et al. CO2 Reforming of methane over Ni-Co/ZSM5 catalysts: Aging and carbon deposition study[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9201-9208. doi: 10.1016/j.ijhydene.2015.05.147 [9] FAROOQI A S, YUSUF M, ABDULLAH B. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(60): 31024-31040. [10] 李春林, 伏义路, 屠兢. 水蒸气对Ni/Ce-Zr-Al-OX催化剂上CO2重整CH4的影响[J]. 催化学报, 2004, 25(6): 450-454. doi: 10.3321/j.issn:0253-9837.2004.06.007 [11] OEZKARA S. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12821-12828. doi: 10.1016/j.ijhydene.2010.08.134 [12] JANG W J, JEONG D W, SHIM J O, et al. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application[J]. Applied Energy, 2016, 173: 80-91. doi: 10.1016/j.apenergy.2016.04.006 [13] WU K T, YU C T, CHEIN R Y. Numerical modeling on catalytic tri-reforming reaction of methane for syngas production[J]. Energy Procedia, 2017, 105: 4198-4203. doi: 10.1016/j.egypro.2017.03.895 [14] MINETTE F, WILDE J D. Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors[J]. Chemical Engineering Journal, 2020, 407: 127218. [15] ITKULOVA S S, ZAKUMBAEVA G D, NURMAKANOV Y Y, et al. Syngas production by bireforming of methane over Co-based alumina-supported catalysts[J]. Catalysis Today, 2014, 228: 194-198. doi: 10.1016/j.cattod.2014.01.013 [16] 任盼盼. 新型镍基甲烷水蒸气-二氧化碳双重整催化剂的制备与性能研究[D]. 辽宁大连: 大连理工大学, 2016. [17] SHAKOURI M, HU Y, LEHOUX R, et al. CO2 Conversion through combined steam and CO2 reforming of methane reactions over Ni and Co catalysts[J]. The Canadian Journal of Chemical Engineering, 2020, 99(1): 153-165. [18] 黄德明. 合成氨生产工艺学[M]. 北京: 烃加工出版社, 1989. [19] XU J G, FROMENT G F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. AIChE Journal, 1989, 35(1): 88-96. doi: 10.1002/aic.690350109 [20] DONAZZI A, BERETTA A, GROPPI G, et al. Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst: Part II. Role of CO2 reforming[J]. Journal of Catalysis, 2008, 255(2): 259-268. doi: 10.1016/j.jcat.2008.02.010 [21] HE Z, WILDE J D. Numerical simulation of commercial scale autothermal chemical looping reforming and bi-reforming for syngas production[J]. Chemical Engineering Journal, 2021, 47(1): 153-165. [22] MOK L F. Sensitivity study of energy consumption in ammonia plant operation[D]. USA: Berkeley University of California, 1982. [23] YU Z, CAO E, WANG Y, et al. Simulation of natural gas steam reforming furnace[J]. Fuel Processing Technology, 2006, 87(8): 695-704. doi: 10.1016/j.fuproc.2005.11.008 [24] LI W, ZHAO Z, REN P, et al. Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane[J]. Rsc Advances, 2015, 5: 100865-100872. doi: 10.1039/C5RA22237K -