Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration
-
摘要: 选用管式炉作为燃烧反应器,研究了硅藻土对垃圾焚烧过程中重金属Pb、Cd、Cu和Zn分布特性的影响,并运用HSC Chemistry 6.0软件进行热力学模拟。实验结果表明:硅藻土使得重金属更多地分布于底灰中,对重金属的吸附作用随着其质量分数的增加逐步提升。600~800 ℃范围内硅藻土对重金属最佳吸附效率依次为Cd > Zn > Pb > Cu,900 ℃硅藻土对重金属的最佳吸附效率依次为Cd > Pb > Zn > Cu。模拟结果表明硅藻土能够与Pb、Cd、Zn反应生成相应的硅酸盐,对Cu的形态变化无影响。Abstract: The tube furnace was selected as the combustion reactor, the actual domestic waste was used as the raw material. The heavy metal content was measured by inductively coupled plasma atomic emission spectrometer (ICP-AES), and the surface morphology of diatomite before and after incineration was observed by the field emission electron microscope (FE-SEM). The influence of diatomite on the migration characteristics of heavy metals Pb, Cd, Cu and Zn in the waste incineration process at different temperatures (600、700、800、900 ℃) and addition mass fraction (1%, 2%, 3%, 4%) was investigated in this paper. And HSC Chemistry 6.0 was used for thermodynamic simulation calculations. The experimental results showed that diatomite could make heavy metals more distributed in the bottom ash. With the increase in the amount of addition, the adsorption of heavy metals by the diatomite gradually increased. When the experimental incineration temperature was between 600−800 ℃, the adsorption efficiency of diatomite for heavy metals was as follows: Cd> Zn> Pb> Cu; at 900 ℃: Cd> Pb> Zn> Cu. The corresponding temperature of the best adsorption efficiency for Pb was 900 ℃, for Zn was 800 ℃, and for Cd and Cu were 700 ℃. Thermodynamic simulation found that diatomite could react with Pb, Cd, Zn to form corresponding silicates, and had no effect on the morphological changes of Cu. Combined with thermodynamic equilibrium simulation and experimental data analysis, physical adsorption and chemical adsorption coexisted in the adsorption of Pb, Cd and Zn by diatomite, and physical adsorption was the main adsorption for Cu.
-
Key words:
- waste incineration /
- diatomite /
- heavy metals /
- migration and distribution /
- thermodynamic simulation
-
图 1 实验装置系统示意图
Figure 1. Schematic diagram of experimental device system
1−DSR-30A compressor;2−Air tank;3−Flow controller;4−LZB-10 glass rotameter;5−Quartz glass tube;6−SK2-4-12 tube furnace;7−Corundum boat;8−Temperature controller;9−Fiberglass cartridges;10−Air bottle;11−HNO3 solution;12−H2O2 solution;13−Air bottle
表 1 垃圾样品的元素分析与工业分析
Table 1. Ultimate and proximate analysis of waste sample
wultimate1)/% wproximate2)/% C H O N Cl Mad Aad Vad FCad 47.29 7.35 1.06 19.33 0.36 3.39 21.56 72.02 3.26 1)Ultimate analysis; 2)Proximate analysis; ad−Air dry basis; M−Moisture; V−Volatile matter; FC−Fixed carbon 表 2 热力学模拟初始值
Table 2. Thermodynamic simulation initial value
n/mol C H O N Si Pb Cr Cu Zn 15.72 28.97 4.81 0.28 0.55 7.24×10−5 7.56×10−6 1.18×10−4 1.61×10−4 表 3 硅藻土对Pb的吸附效率
Table 3. Adsorption efficiency of diatomite to Pb
w(diatomite)/% η/% 600 ℃ 700 ℃ 800 ℃ 900 ℃ 1 15.12 13.59 10.23 22.54 2 26.04 24.26 21.96 36.70 3 32.32 34.75 33.57 54.65 4 43.94 45.68 48.11 64.95 表 4 硅藻土对Cd的吸附效率
Table 4. Adsorption efficiency of diatomite to Cd
w(diatomite)/% η/% 600 ℃ 700 ℃ 800 ℃ 900 ℃ 1 62.44 111.46 71.10 33.76 2 96.87 149.98 111.63 79.68 3 136.18 235.51 183.65 174.40 4 153.83 283.10 217.11 210.40 表 5 硅藻土对Cu的吸附效率
Table 5. Adsorption efficiency of diatomite to Cu
w(diatomite)/% η/% 600 ℃ 700 ℃ 800 ℃ 900 ℃ 1 4.63 4.59 0.78 −0.57 2 10.80 11.79 −0.77 1.67 3 8.11 10.94 3.14 1.27 4 12.56 13.94 5.68 4.24 表 6 硅藻土对Zn的吸附效率
Table 6. Adsorption efficiency of diatomite to Zn
w(diatomite)/% η/% 600 ℃ 700 ℃ 800 ℃ 900 ℃ 1 25.80 24.12 17.60 19.58 2 35.38 35.72 25.82 25.75 3 48.61 57.48 45.07 40.57 4 51.20 58.28 59.77 46.60 -
[1] 中华人民共和国国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020. [2] 付燕燕. 生态环境与城市生活垃圾无害化处理方式[J]. 环境与发展, 2019, 31(10): 209-211. [3] HASSELRIIS F, LICATA A. Analysis of heavy metal emission data from municipal waste combustion[J]. Journal of Hazardous Materials, 1996, 47(1): 77-102. [4] THOMAS D B, DENNIS N S. Mercury measurement and its control: What we know, have learned, and need to further investigate[J]. Journal of the Air and Waste Management Association, 1999, 49(12): 1469-1473. doi: 10.1080/10473289.1999.10463975 [5] 胡济民, 王瑟澜, 徐浩然, 等. 城市生活垃圾焚烧过程中铅的迁移特性探究[J]. 华东理工大学学报(自然科学版), 2018, 44(6): 800-806. [6] BARTON R G, CLARK W D, SEEKER W R. Fate of metals in waste combustion systems[J]. Combustion Science and Technology, 1990, 74: 327-342. doi: 10.1080/00102209008951696 [7] ZHONG D X, ZHONG Z P, WU L H. Thermal characteristic and fate of heavy metals during thermal treatment of sedum plumbizincicola, a zinc and cadmium hyperaccumulator[J]. Fuel Processing Technology, 2015, 131: 125-132. doi: 10.1016/j.fuproc.2014.11.022 [8] ZHANG Y, LI Q, MENG A, et al. Effects of sulfur compounds on Cd partitioning in a simulated municipal solid waste incinerator[J]. Chinese Journal of Chemical Engineering, 2007, 15(6): 889-894. doi: 10.1016/S1004-9541(08)60020-8 [9] 王学凯, 王金淑, 杜玉成, 等. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 23-33. [10] 赵洪石, 何文, 罗守全, 等. 硅藻土应用及研究进展[J]. 山东轻工业学院学报(自然科学版), 2007, 21(1): 80-82, 100. [11] 卢欢亮, 王伟. 非金属矿物对模拟垃圾焚烧烟气中氯化镉的吸附研究[J]. 环境卫生工程, 2005, 13(3): 14-17. doi: 10.3969/j.issn.1005-8206.2005.01.004 [12] 石德智, 王攀, 胡春艳, 等. 硅铝调控与晶种诱导对水热稳定飞灰中重金属的协同影响[J]. 化工学报, 2018, 69(8): 3651-3661. [13] 何雪鸿. 富氧焚烧垃圾发电技术研究及烟气净化工艺模拟[D]. 北京: 华北电力大学, 2014. [14] 刘珍祥. 城市生活垃圾无害化处理技术及前景分析[J]. 广东科技, 2013, 22(24): 227-228. doi: 10.3969/j.issn.1006-5423.2013.24.129 [15] 丁建. 两种废物重金属分布形态的热力学平衡模拟[D]. 沈阳: 沈阳航空航天大学, 2013. [16] 吴桢芬, 苏有勇, 王华, 等. 气氛对垃圾焚烧中重金属迁移特性的影响[J]. 环境工程学报, 2011, 5(7): 1623-1626. [17] 张光明, 冯可芹, 邓伟林, 等. 钒钛磁铁矿碳热合成铁基复合材料的热力学分析[J]. 四川大学学报(工程科学版), 2012, 44(4): 191-196. [18] KIMBROUGH, DAVID E, WAKAKUWA, et al. Acid digestion for sediments, sludges, soils, and solid wastes: A proposed alternative to EPA SW 846 method 3050[J]. Environmental Science and Technology, 1989, 32: 898-900. [19] LIU Z S, LIN C L, CHOU J D. Studies of Cd, Pb and Cr distribution characteristics in bottom ash following agglomeration/defluidization in a fluidized bed boiler incinerating artificial waste[J]. Fuel Processing Technology, 2010, 91(6): 591-599. doi: 10.1016/j.fuproc.2010.01.005 [20] AL-DEGS Y, KHRAISHEH M A M, TUTUNJI M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15): 3724-3728. doi: 10.1016/S0043-1354(01)00071-9 [21] 朱健, 王平, 雷明婧, 等. 硅藻土理化特性及改性研究进展[J]. 中南林业科技大学学报, 2012, 32(12): 61-66. [22] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2): 3009-3016. doi: 10.1016/j.proci.2004.07.047 -