高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

硅藻土对垃圾焚烧过程中重金属分布的影响

唐彪 吴安 李彪 吴亭亭

唐彪, 吴安, 李彪, 吴亭亭. 硅藻土对垃圾焚烧过程中重金属分布的影响[J]. 华东理工大学学报(自然科学版), 2022, 48(3): 316-323. doi: 10.14135/j.cnki.1006-3080.20210310001
引用本文: 唐彪, 吴安, 李彪, 吴亭亭. 硅藻土对垃圾焚烧过程中重金属分布的影响[J]. 华东理工大学学报(自然科学版), 2022, 48(3): 316-323. doi: 10.14135/j.cnki.1006-3080.20210310001
TANG Biao, WU An, LI Biao, WU Tingting. Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration[J]. Journal of East China University of Science and Technology, 2022, 48(3): 316-323. doi: 10.14135/j.cnki.1006-3080.20210310001
Citation: TANG Biao, WU An, LI Biao, WU Tingting. Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration[J]. Journal of East China University of Science and Technology, 2022, 48(3): 316-323. doi: 10.14135/j.cnki.1006-3080.20210310001

硅藻土对垃圾焚烧过程中重金属分布的影响

doi: 10.14135/j.cnki.1006-3080.20210310001
详细信息
    作者简介:

    唐彪:唐 彪(1995—),男,四川安岳县人,硕士生,主要研究方向为垃圾焚烧。E-mail:18721361292@163.com

    通讯作者:

    吴亭亭,E-mail:ttwu@ecust.edu.cn

  • 中图分类号: X705

Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration

  • 摘要: 选用管式炉作为燃烧反应器,研究了硅藻土对垃圾焚烧过程中重金属Pb、Cd、Cu和Zn分布特性的影响,并运用HSC Chemistry 6.0软件进行热力学模拟。实验结果表明:硅藻土使得重金属更多地分布于底灰中,对重金属的吸附作用随着其质量分数的增加逐步提升。600~800 ℃范围内硅藻土对重金属最佳吸附效率依次为Cd > Zn > Pb > Cu,900 ℃硅藻土对重金属的最佳吸附效率依次为Cd > Pb > Zn > Cu。模拟结果表明硅藻土能够与Pb、Cd、Zn反应生成相应的硅酸盐,对Cu的形态变化无影响。

     

  • 图  1  实验装置系统示意图

    Figure  1.  Schematic diagram of experimental device system

    1−DSR-30A compressor;2−Air tank;3−Flow controller;4−LZB-10 glass rotameter;5−Quartz glass tube;6−SK2-4-12 tube furnace;7−Corundum boat;8−Temperature controller;9−Fiberglass cartridges;10−Air bottle;11−HNO3 solution;12−H2O2 solution;13−Air bottle

    图  2  硅藻土粒径分布

    Figure  2.  Distribution of diatomite particle size

    图  3  焚烧前硅藻土表面形貌的FE-SEM图

    Figure  3.  FE-SEM diagram of diatomite surface morphology before incineration

    图  4  焚烧后硅藻土表面形貌的FE-SEM图

    Figure  4.  FE-SEM diagram of diatomite surface morphology after incineration

    图  5  添加不同质量分数硅藻土后Pb在底灰中的归一化分布

    Figure  5.  Normalized distribution of Pb in bottom ash after adding diatomite with different mass fractions

    图  6  添加不同质量分数硅藻土后Cd在底灰中的归一化分布

    Figure  6.  Normalized distribution of Cd in bottom ash after adding diatomite with different mass fractions

    图  7  添加不同质量分数硅藻土后Cu在底灰中的归一化分布

    Figure  7.  Normalized distribution of Cu in bottom ash after adding diatomite with different mass fractions

    图  8  添加不同质量分数硅藻土后Zn在底灰中的归一化分布

    Figure  8.  Normalized distribution of Zn in bottom ash after adding diatomite with different mass fraction

    图  9  硅藻土对Pb分布影响的热力学平衡模拟

    Figure  9.  Thermodynamic equilibrium simulation of the effect of diatomite on Pb distribution

    图  10  硅藻土对Cd迁移分布的热力学平衡模拟

    Figure  10.  Thermodynamic equilibrium simulation of the effect of diatomite on Cd distribution

    图  11  硅藻土对Cu迁移分布的热力学平衡模拟

    Figure  11.  Thermodynamic equilibrium simulation of the effect of diatomite on Cu distribution

    图  12  硅藻土对Zn迁移分布的热力学平衡模拟

    Figure  12.  Thermodynamic equilibrium simulation of the effect of diatomite on Zn distribution

    表  1  垃圾样品的元素分析与工业分析

    Table  1.   Ultimate and proximate analysis of waste sample

    wultimate1)/%wproximate2)/%
    CHONClMadAadVadFCad
    47.297.351.0619.330.363.3921.5672.023.26
    1)Ultimate analysis; 2)Proximate analysis; ad−Air dry basis; M−Moisture; V−Volatile matter; FC−Fixed carbon
    下载: 导出CSV

    表  2  热力学模拟初始值

    Table  2.   Thermodynamic simulation initial value

    n/mol
    CHONSiPbCrCuZn
    15.7228.974.810.280.557.24×10−57.56×10−61.18×10−41.61×10−4
    下载: 导出CSV

    表  3  硅藻土对Pb的吸附效率

    Table  3.   Adsorption efficiency of diatomite to Pb

    w(diatomite)/% η/%
    600 ℃700 ℃800 ℃900 ℃
    115.1213.5910.2322.54
    226.0424.2621.9636.70
    332.3234.7533.5754.65
    443.9445.6848.1164.95
    下载: 导出CSV

    表  4  硅藻土对Cd的吸附效率

    Table  4.   Adsorption efficiency of diatomite to Cd

    w(diatomite)/%η/%
    600 ℃700 ℃800 ℃900 ℃
    162.44111.4671.1033.76
    296.87149.98111.6379.68
    3136.18235.51183.65174.40
    4153.83283.10217.11210.40
    下载: 导出CSV

    表  5  硅藻土对Cu的吸附效率

    Table  5.   Adsorption efficiency of diatomite to Cu

    w(diatomite)/%η/%
    600 ℃700 ℃800 ℃900 ℃
    14.634.590.78−0.57
    210.8011.79−0.771.67
    38.1110.943.141.27
    412.5613.945.684.24
    下载: 导出CSV

    表  6  硅藻土对Zn的吸附效率

    Table  6.   Adsorption efficiency of diatomite to Zn

    w(diatomite)/%η/%
    600 ℃700 ℃800 ℃900 ℃
    125.8024.1217.6019.58
    235.3835.7225.8225.75
    348.6157.4845.0740.57
    451.2058.2859.7746.60
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
    [2] 付燕燕. 生态环境与城市生活垃圾无害化处理方式[J]. 环境与发展, 2019, 31(10): 209-211.
    [3] HASSELRIIS F, LICATA A. Analysis of heavy metal emission data from municipal waste combustion[J]. Journal of Hazardous Materials, 1996, 47(1): 77-102.
    [4] THOMAS D B, DENNIS N S. Mercury measurement and its control: What we know, have learned, and need to further investigate[J]. Journal of the Air and Waste Management Association, 1999, 49(12): 1469-1473. doi: 10.1080/10473289.1999.10463975
    [5] 胡济民, 王瑟澜, 徐浩然, 等. 城市生活垃圾焚烧过程中铅的迁移特性探究[J]. 华东理工大学学报(自然科学版), 2018, 44(6): 800-806.
    [6] BARTON R G, CLARK W D, SEEKER W R. Fate of metals in waste combustion systems[J]. Combustion Science and Technology, 1990, 74: 327-342. doi: 10.1080/00102209008951696
    [7] ZHONG D X, ZHONG Z P, WU L H. Thermal characteristic and fate of heavy metals during thermal treatment of sedum plumbizincicola, a zinc and cadmium hyperaccumulator[J]. Fuel Processing Technology, 2015, 131: 125-132. doi: 10.1016/j.fuproc.2014.11.022
    [8] ZHANG Y, LI Q, MENG A, et al. Effects of sulfur compounds on Cd partitioning in a simulated municipal solid waste incinerator[J]. Chinese Journal of Chemical Engineering, 2007, 15(6): 889-894. doi: 10.1016/S1004-9541(08)60020-8
    [9] 王学凯, 王金淑, 杜玉成, 等. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 23-33.
    [10] 赵洪石, 何文, 罗守全, 等. 硅藻土应用及研究进展[J]. 山东轻工业学院学报(自然科学版), 2007, 21(1): 80-82, 100.
    [11] 卢欢亮, 王伟. 非金属矿物对模拟垃圾焚烧烟气中氯化镉的吸附研究[J]. 环境卫生工程, 2005, 13(3): 14-17. doi: 10.3969/j.issn.1005-8206.2005.01.004
    [12] 石德智, 王攀, 胡春艳, 等. 硅铝调控与晶种诱导对水热稳定飞灰中重金属的协同影响[J]. 化工学报, 2018, 69(8): 3651-3661.
    [13] 何雪鸿. 富氧焚烧垃圾发电技术研究及烟气净化工艺模拟[D]. 北京: 华北电力大学, 2014.
    [14] 刘珍祥. 城市生活垃圾无害化处理技术及前景分析[J]. 广东科技, 2013, 22(24): 227-228. doi: 10.3969/j.issn.1006-5423.2013.24.129
    [15] 丁建. 两种废物重金属分布形态的热力学平衡模拟[D]. 沈阳: 沈阳航空航天大学, 2013.
    [16] 吴桢芬, 苏有勇, 王华, 等. 气氛对垃圾焚烧中重金属迁移特性的影响[J]. 环境工程学报, 2011, 5(7): 1623-1626.
    [17] 张光明, 冯可芹, 邓伟林, 等. 钒钛磁铁矿碳热合成铁基复合材料的热力学分析[J]. 四川大学学报(工程科学版), 2012, 44(4): 191-196.
    [18] KIMBROUGH, DAVID E, WAKAKUWA, et al. Acid digestion for sediments, sludges, soils, and solid wastes: A proposed alternative to EPA SW 846 method 3050[J]. Environmental Science and Technology, 1989, 32: 898-900.
    [19] LIU Z S, LIN C L, CHOU J D. Studies of Cd, Pb and Cr distribution characteristics in bottom ash following agglomeration/defluidization in a fluidized bed boiler incinerating artificial waste[J]. Fuel Processing Technology, 2010, 91(6): 591-599. doi: 10.1016/j.fuproc.2010.01.005
    [20] AL-DEGS Y, KHRAISHEH M A M, TUTUNJI M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15): 3724-3728. doi: 10.1016/S0043-1354(01)00071-9
    [21] 朱健, 王平, 雷明婧, 等. 硅藻土理化特性及改性研究进展[J]. 中南林业科技大学学报, 2012, 32(12): 61-66.
    [22] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2): 3009-3016. doi: 10.1016/j.proci.2004.07.047
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  129
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2022-06-29

目录

    /

    返回文章
    返回