高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

硅藻土对垃圾焚烧过程中重金属分布的影响

唐彪 吴安 李彪 吴亭亭

唐彪, 吴安, 李彪, 吴亭亭. 硅藻土对垃圾焚烧过程中重金属分布的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210310001
引用本文: 唐彪, 吴安, 李彪, 吴亭亭. 硅藻土对垃圾焚烧过程中重金属分布的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210310001
Tang Biao, Wu An, Li Biao, Wu Tingting. Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210310001
Citation: Tang Biao, Wu An, Li Biao, Wu Tingting. Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210310001

硅藻土对垃圾焚烧过程中重金属分布的影响

doi: 10.14135/j.cnki.1006-3080.20210310001
详细信息
    作者简介:

    唐彪:唐 彪(1995—),男,四川安岳县人,硕士生,主要研究方向:垃圾焚烧。E-mail:18721361292@163.com

    通讯作者:

    吴亭亭,E-mail:ttwu@ecust.edu.cn

  • 中图分类号: X705

Influence of Diatomite on Distribution of Heavy Metals in Waste Incineration

  • 摘要: 选用管式炉作为燃烧反应器,研究硅藻土对垃圾焚烧过程中重金属铅、镉、铜和锌分布特性的影响,并运用HSC Chemistry 6.0进行热力学模拟。实验结果表明:硅藻土能使重金属更多地分布于底灰中,随着其质量分数的增加,对重金属的吸附作用逐步提升;600~800 ℃下,硅藻土对重金属最佳吸附效率依次为:Cd > Zn > Pb > Cu;900 ℃下为:Cd > Pb > Zn > Cu。模拟结果发现硅藻土能够与Pb、Cd、Zn反应生成相应的硅酸盐,对Cu的形态变化无影响。

     

  • 图  1  实验装置系统示意图

    Figure  1.  Schematic diagram of experimental device system

    1-DSR-30A compressor;2-Air tank;3-Flow controller;4-LZB-10 glass rotameter;5-Quartz glass tube;6-SK2-4-12 Tube furnace;7-Corundum boat;8-Temperature controller;9-Fiberglass cartridges;10-Air bottle;11-HNO3 solution;12-H2O2 solution;13-Air bottle

    图  2  硅藻土粒径分布

    Figure  2.  The distribution of diatomite particle size

    图  3  焚烧前硅藻土的表面形貌

    Figure  3.  The FE-SEM diagram of diatomite surface morphology

    图  4  焚烧后硅藻土的表面形貌

    Figure  4.  The FE-SEM diagram of diatomite surface morphology after incineration

    图  5  添加不同质量分数硅藻土后Pb在底灰中的归一化分布

    Figure  5.  Distribution of Pb in bottom ash after adding diatomite with different mass fraction

    图  6  添加不同质量分数硅藻土后Cd在底灰中的归一化分布

    Figure  6.  Distribution of Cd in bottom ash after adding diatomite with different mass fraction

    图  7  添加不同质量分数硅藻土后Cu在底灰中的归一化分布

    Figure  7.  Distribution of Cu in bottom ash after adding diatomite with different mass fraction

    图  8  添加不同质量分数硅藻土后Zn在底灰中的归一化分布

    Figure  8.  Distribution of Zn in bottom ash after adding diatomite with different mass fraction

    图  9  硅藻土对Pb分布影响的热力学平衡模拟

    Figure  9.  Thermodynamic equilibrium simulation of the effect of diatomite on Pb distribution

    图  10  硅藻土对Cd迁移分布的热力学平衡模拟

    Figure  10.  Thermodynamic equilibrium simulation of the effect of diatomite on Cd distribution

    图  11  硅藻土对Cu迁移分布的热力学平衡模拟

    Figure  11.  Thermodynamic equilibrium simulation of the effect of diatomite on Cu distribution

    图  12  硅藻土对Zn迁移分布的热力学平衡模拟

    Figure  12.  Thermodynamic equilibrium simulation of the effect of diatomite on Zn distribution

    表  1  垃圾样品的元素分析与工业分析

    Table  1.   Ultimate and proximate analysis of sample

    ωultimate1)/%ωproximate2)/%
    CHONClMadAadVadFCad
    47.297.351.0619.330.363.3921.5672.023.26
    1)Ultimate analysis; 2)Proximate analysis; ad- Air dry basis; M-Moisture; V-Volatile matter; FC-Fixed carbon
    下载: 导出CSV

    表  2  热力学模拟初始值

    Table  2.   Thermodynamic simulation initial value

    CHONSiPbCrCuZn
    15.7228.974.810.280.557.24×10−57.56×10−61.18×10−41.61×10−4
    下载: 导出CSV

    表  3  硅藻土对Pb的吸附效率

    Table  3.   Adsorption efficiency of diatomite to Pb

    w1)/%η2) η
    (600 ℃)3)700 ℃800 ℃900 ℃
    1.0015.12% 13.59%10.23%22.54%
    2.0026.04%24.26%21.96%36.70%
    3.0032.32%34.75%33.57%54.65%
    4.0043.94%45.68%48.11%64.95%
    1)The added mass fraction of diatomite; 2)Adsorption efficiency; 3)The burning temperature
    下载: 导出CSV

    表  4  硅藻土对Cd的吸附效率

    Table  4.   Adsorption efficiency of diatomite to Cd

    w/%η
    600 ℃700 ℃800 ℃900 ℃
    1.0062.44%111.46%71.10%33.76%
    2.0096.87%149.98%111.63%79.68%
    3.00136.18%235.51%183.65%174.40%
    4.00153.83%283.10%217.11%210.40%
    下载: 导出CSV

    表  5  硅藻土对Cu的吸附效率

    Table  5.   Adsorption efficiency of diatomite to Cu

    w/%η
    600 ℃700 ℃800 ℃900 ℃
    1.004.63%4.59%0.78%−0.57%
    2.0010.80%11.79%−0.77%1.67%
    3.008.11%10.94%3.14%1.27%
    4.0012.56%13.94%5.68%4.24%
    下载: 导出CSV

    表  6  硅藻土对Zn的吸附效率

    Table  6.   Adsorption efficiency of diatomite to Zn

    w/%η
    600 ℃700 ℃800 ℃900 ℃
    1.0025.80%24.12%17.60%19.58%
    2.0035.38%35.72%25.82%25.75%
    3.0048.61%57.48%45.07%40.57%
    4.0051.20%58.28%59.77%46.60%
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
    [2] 付燕燕. 生态环境与城市生活垃圾无害化处理方式[J]. 环境与发展, 2019, 31(10): 209-211.
    [3] HASSELRIIS F, LICATA A. Analysis of heavy metal emission data from municipal waste combustion[J]. Journal of Hazardous Materials, 1996, 47(1): 77-102.
    [4] THOMAS D B, DENNIS N S. Mercury measurement and its control: what we know, have learned, and need to further investigate[J]. Journal of the Air and Waste Management Association, 1999, 49(12): 1469-1473. doi: 10.1080/10473289.1999.10463975
    [5] 胡济民, 王瑟澜, 徐浩然, 等. 城市生活垃圾焚烧过程中铅的迁移特性探究[J]. 华东理工大学学报(自然科学版), 2018, 44(06): 800-806.
    [6] BARTON R G, CLARK W D, SEEKER W R. Fate of Metals in Waste Combustion Systems[J]. Combustion Science and Technology., 1990, 74(1-6): 327-342. doi: 10.1080/00102209008951696
    [7] ZHONG D X, ZHONG ZP WU L H. Thermal characteristic and fate of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator[J]. Fuel Processing Technology, 2015, 131: 125-132. doi: 10.1016/j.fuproc.2014.11.022
    [8] ZHANG Y, LI Q, MENG A, et al. Effects of sulfur compounds on Cd partitioning in a simulated municipal solid waste incinerator[J]. Chinese Journal of Chemical Engineering, 2007, 15(6): 889-894. doi: 10.1016/S1004-9541(08)60020-8
    [9] 王学凯, 王金淑, 杜玉成, 等. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(03): 23-33.
    [10] 赵洪石, 何文, 罗守全, 等. 硅藻土应用及研究进展[J]. 山东轻工业学院学报(自然科学版), 2007(1): 80-82, 100.
    [11] 卢欢亮, 王伟. 非金属矿物对模拟垃圾焚烧烟气中氯化镉的吸附研究[J]. 环境卫生工程, 2005(3): 14-17. doi: 10.3969/j.issn.1005-8206.2005.01.004
    [12] 石德智, 王攀, 胡春艳, 等. 硅铝调控与晶种诱导对水热稳定飞灰中重金属的协同影响[J]. 化工学报, 2018, 69(08): 3651-3661.
    [13] 何雪鸿. 富氧焚烧垃圾发电技术研究及烟气净化工艺模拟[D]. 北京: 华北电力大学, 2014.
    [14] 刘珍祥. 城市生活垃圾无害化处理技术及前景分析[J]. 广东科技, 2013, 22(24): 227-228. doi: 10.3969/j.issn.1006-5423.2013.24.129
    [15] 丁建. 两种废物重金属分布形态的热力学平衡模拟[D]. 沈阳: 沈阳航空航天大学, 2013.
    [16] 吴桢芬, 苏有勇, 王华, 等. 气氛对垃圾焚烧中重金属迁移特性的影响[J]. 环境工程学报, 2011, 5(07): 1623-1626.
    [17] 张光明, 冯可芹, 邓伟林, 等. 钒钛磁铁矿碳热合成铁基复合材料的热力学分析[J]. 四川大学学报(工程科学版), 2012, 44(04): 191-196.
    [18] KIMBROUGH, DAVID E., WAKAKUWA, et al Acid Digestion for Sediments, Sludges, Soils, and Solid Wastes. A Proposed Alternative to EPA SW 846 Method 3050[J]. Environmental science and technology, 1989, 32: 898.
    [19] LIU Z S, LIN C L, CHOU J D. Studies of Cd, Pb and Cr distribution characteristics in bottom ash following agglomeration/defluidization in a fluidized bed boiler incinerating artificial waste[J]. Fuel Processing Technology, 2010, 91(6): 591-599. doi: 10.1016/j.fuproc.2010.01.005
    [20] AL-DEGS Y, KHRAISHEH M. A. M, TUTUNJI M. F Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15): 3724-3728. doi: 10.1016/S0043-1354(01)00071-9
    [21] 朱健, 王平, 雷明婧, 等. 硅藻土理化特性及改性研究进展[J]. 中南林业科技大学学报, 2012, 32(12): 61-66.
    [22] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2): 3009-3016. doi: 10.1016/j.proci.2004.07.047
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  40
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 网络出版日期:  2021-07-02

目录

    /

    返回文章
    返回