高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

多级孔ZSM-5和β分子筛催化裂解正庚烷增产烯烃

欧苏慧 潘小燕 郑一凡 刘纪昌 宋佳 段泽康

欧苏慧, 潘小燕, 郑一凡, 刘纪昌, 宋佳, 段泽康. 多级孔ZSM-5和β分子筛催化裂解正庚烷增产烯烃[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210309001
引用本文: 欧苏慧, 潘小燕, 郑一凡, 刘纪昌, 宋佳, 段泽康. 多级孔ZSM-5和β分子筛催化裂解正庚烷增产烯烃[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210309001
OU Suhui, PAN Xiaoyan, ZHENG Yifan, LIU Jichang, SONG Jia, DUAN Zekang. Catalytic Cracking of N-Heptane by Hierarchical ZSM-5 and β Zeolites to Increase Yield of Olefins[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210309001
Citation: OU Suhui, PAN Xiaoyan, ZHENG Yifan, LIU Jichang, SONG Jia, DUAN Zekang. Catalytic Cracking of N-Heptane by Hierarchical ZSM-5 and β Zeolites to Increase Yield of Olefins[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210309001

多级孔ZSM-5和β分子筛催化裂解正庚烷增产烯烃

doi: 10.14135/j.cnki.1006-3080.20210309001
详细信息
    作者简介:

    欧苏慧(1995-),硕士生,主要研究方向为催化裂化制低碳烯烃。E-mail:837329696@qq.com

    通讯作者:

    刘纪昌,E-mail:liujc@ecust.edu.cn

  • 中图分类号: TE624

Catalytic Cracking of N-Heptane by Hierarchical ZSM-5 and β Zeolites to Increase Yield of Olefins

  • 摘要: 采用溶剂挥发自组装法和取向连接生长法制备了多级孔结构的10元环ZSM-5分子筛和12元环β分子筛并考察了其催化裂解正庚烷性能。引入介孔后分子筛酸密度更低且扩散能力更强,能够有效减少氢转移副反应发生,多级孔ZSM-5与β可分别将低碳烯烃收率提高16.78%和21.63%。多级孔β分子筛在优化反应条件下,双烯收率为50.29%,比多级孔ZSM-5高10.37%,且丙烯选择性可达32.68%,较高的丙烯选择性是由于其独特的三维12元环孔道结构和较好的介孔与微孔连通性。

     

  • 图  1  多级孔β-HTS分子筛和普通β分子筛(a);多级孔ZSM-5-HTS分子筛和普通ZSM-5分子筛(b)的XRD谱图

    Figure  1.  XRD patterns of hierarchical zeolite β-HTS and conventional β zeolite (a); Hierarchical ZSM-5-HTS and conventional ZSM-5 zeolite (b)

    图  2  合成的不同分子筛的SEM照片

    Figure  2.  SEM micrographs of different zeolites

    图  3  多级孔β-HTS分子筛、普通β分子筛(a)和多级孔ZSM-5-HTS分子筛、普通ZSM-5分子筛(b)的N2吸附-脱附等温线

    Figure  3.  N2 adsorption-desorption isotherms of hierarchical β-HTS and conventional β zeolite (a); hierarchical ZSM-5-HTS and conventional ZSM-5 zeolite (b)

    图  4  多级孔β-HTS分子筛和传统β分子筛的孔径分布图(a); 多级孔ZSM-5-HTS分子筛和传统ZSM-5分子筛的孔径分布图(b)

    Figure  4.  Pore-size distribution of hierarchical β-HTS and conventional β zeolite (a); hierachical ZSM-5-HTS and conventional ZSM-5 zeolite (b)

    图  5  合成不同分子筛的NH3-TPD谱图

    Figure  5.  NH3-TPD spectrum of different zeolites

    图  6  不同分子筛在200 ℃ (a, b)和350 ℃ (c, d)的吡啶红外光谱图

    Figure  6.  Py-IR spectra of pyridine after desorbing at 200 ℃ (a, b) and 350 ℃(c, d) for different zeolites

    图  7  不同温度下正庚烷的转化率

    Figure  7.  Conversions of n-heptane at different temperature

    图  8  不同反应温度下低碳烯烃收率

    Figure  8.  Yield of light olefins at different temperatures

    图  9  不同分子筛得到催化产物中的烷烯比

    Figure  9.  CxH2x+2/CxH2x obtained by different zeolites

    图  10  不同空速下正庚烷的转化率

    Figure  10.  Conversion of n-heptane at different WHSV

    图  11  不同空速下的低碳烯烃收率

    Figure  11.  Yield of light olefins at different WHSV

    图  12  不同分子筛在正庚烷裂解中的稳定性

    Figure  12.  The time-on-stream stability of different zeolites in n-heptane cracking

    图  13  正庚烷催化裂解反应进行20 h后的分子筛积碳量的热重曲线

    Figure  13.  The thermogravimetric analysis of coke on spent hierarchical and conventional zeolite catalysts after 20 h time-on-stream tests in n-heptane catalytic cracking

    表  1  合成不同分子筛的孔结构参数

    Table  1.   Pore structure parameters of different zeolites

    SampleSi/Al ratio[a]SBET/(m2·g−1)Smic/(m2·g−1)Vmic/(cm3·g−1)Vmeso/(cm3·g−1)Vtotal/(cm3·g−1)D/(nm)
    β-HTS33.12554.23361.00.190.701.0015.72
    β24.21501.54380.310.230.110.343.41
    ZSM-5-HTS39.04377.00251.540.130.270.408.24
    ZSM-524.57244.51224.600.120.020.142.42
    [a]Determined by ICP-AES measurement.
    下载: 导出CSV

    表  2  合成分子筛的酸量及酸性分布

    Table  2.   Py-IR Measurements of Acidity for zeolites

    Samplec/(10−4mol·g−1)
    TTLTBSBSL
    ZSM-53.650.223.433.190.18
    ZSM-5-HTS3.402.131.271.090.85
    β4.393.311.080.841.26
    β-HTS1.591.090.500.430.23
    T-Total acid; TL-Total L acid; TB-Total B acid; SL-Strong L acid; SB-Strong B acid
    下载: 导出CSV
  • [1] 徐海丰. 2019年世界乙烯行业发展状况与趋势[J]. 国际石油经济, 2020, 28(05): 48-54. doi: 10.3969/j.issn.1004-7298.2020.05.008
    [2] 马国锋, 徐跃华, 张炜, 等. 中国石化2019年乙烯业务述评[J]. 乙烯工业, 2020, 32(01): 1-5. doi: 10.3969/j.issn.1671-7120.2020.01.002
    [3] 谭捷. 我国丙烯的供需现状及发展前景[J]. 精细与专用化学品, 2019, 27(11): 13-15.
    [4] 宋芙蓉, 戴伟, 杨元一. 世界乙烯工业发展评述[J]. 石油化工, 2004(12): 1117-1123. doi: 10.3321/j.issn:1000-8144.2004.12.001
    [5] 肖霞. 多级孔纳米ZSM-5分子筛聚集体的制备调控及其正庚烷催化裂解性能研究[D]. 北京: 中国石油大学(北京), 2017.
    [6] JIRI C, SVETLEANA M. Perpectives of micro/mesoporous composites in catalysis[J]. Catalysis Reviews, 2007, 49(4): 457-509. doi: 10.1080/01614940701583240
    [7] 欧阳颖, 陈蓓艳, 朱根权, 等. 催化裂化过程中改性Beta分子筛多产异丁烯作用的研究[J]. 石油炼制与化工, 2017(11): 1-6. doi: 10.3969/j.issn.1005-2399.2017.11.001
    [8] MARTIN S H, ESBEN T, KRESTEN E, et al. Catalysis with hierarchical zeolites[J]. Catalysis Today, 2011, 168(1): 3-16. doi: 10.1016/j.cattod.2011.01.007
    [9] SATOSHI I, TAKECHI K, KUBOTA Y. Selective formation of propylene by hexane cracking over MCM-68 zeolite catalyst[J]. Chemical Communications, 2010, 46(15): 2662-2664. doi: 10.1039/b925408k
    [10] TOSHEVA L, VALCHEV V P. Nanozeolites: Synthesis, crystallization mechanism, and applications[J]. Chemistry of Materials, 2005, 17(10): 24-94.
    [11] 肖霞, 孙兵, 范晓强, 等. 干胶法合成多级孔ZSM-5分子筛及其正辛烷催化裂解反应性能[J]. 工业催化, 2019, 253(10): 35-42.
    [12] XU W, DONG J, Li J, et al. A novel method for the preparation of zeolite ZSM-5[J]. Journal of the Chemical, Society Chemical Communications, 1990, 10(10): 755-756.
    [13] JIN D, YE G H, ZHENG J W, et al. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated ssembly of premanufactured building blocks[J]. ACS Catalysis, 2017, 7(1): 5887-5902.
    [14] ZHU K, SUN J, LIU J, et al. Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites[J]. ACS Catalysis, 2011, 1(7): 682-690. doi: 10.1021/cs200085e
    [15] CHEN J, HUA W M, HUO Q S, et al. Tailoring the structure of hierarchically porous zeolite beta through modified orientated attachment growth in a dry gel system[J]. Chemistry (Weinheim an der Bergastrasse, Germany), 2014, 20(45): 14744-14755.
    [16] ZHANG Y, ZHU K, ZHOU X, et al. Hierarchically porous zeolite beta synthesized via steam-assisted crystallization of silanized dry gel[J]. Materials Letters, 2014, 131(15): 214-216.
    [17] ZHANG Y, ZHU K, ZHOU X, et al. Synthesis of hierarchically porous ZSM-5 zeolites by steam-assisted crystallization of dry gels silanized with short-chain organosilanes[J]. New Journal of Chemistry, 2014, 38(5): 5808-5816.
    [18] 蔡焕焕. 绿色高效Beta分子筛的制备及其催化性能研究[D]. 上海: 华东理工大学, 2020.
    [19] 江蕾, 吴庆玲, 程栖桐, 等. 5A和ZSM-5分子筛吸附分离石脑油中烷烃组分的研究[J]. 石油炼制与化工, 2020, 51(3): 6-12.
    [20] SERRANO D P, AGUADO J, ESCOLA J, et al. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds[J]. Chemistry of Materials, 2006, 18(10): 2462-2464. doi: 10.1021/cm060080r
    [21] CHRISTENSEN C H, JOHANNSEN K, SCHMIDT I, et al. Catalytic benzene alkylation over mesoporous zeolite Single crystals: improving activity and selectivity with a family of porous materials[J]. Journal of the American Chemical Society, 2003, 125(44): 13370-13371. doi: 10.1021/ja037063c
    [22] ZHU K, EGEBLAD K, CHRISTENSEN C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites[J]. European Journal of Inorganic Chemistry, 2007, 18(2): 3955-3960.
    [23] XIAO F S, WANG L F, YIN C Y, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie, 2006, 11(8): 3162-3165.
    [24] JAVIER P R, CLAUS H, KRESTEN E, et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(1): 2530-2542.
    [25] MORALES P P, ALVAREZ F, BUCIO L, et al. Synthesis and structural properties of zeolitic nanocrystals Ⅱ: FAU-type zeolites[J]. The Journal of Physical Chemistry C, 2009, 113(6): 2247-2255. doi: 10.1021/jp8070713
    [26] ZHANG X X, CHENG D G, CHEN F Q, et al. n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores[J]. , 2017, 168(17): 352-359.
    [27] GAO X H, TANG X H, LU Z C, et al. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication[J]. Solid State Sciences, 2010, 12(7): 1278-1282. doi: 10.1016/j.solidstatesciences.2010.04.020
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  29
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2021-07-12

目录

    /

    返回文章
    返回