高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

CuO/ZnO/Al2O3改性催化剂上CH3OH重整制氢的研究

王康 李涛 张海涛

王康, 李涛, 张海涛. CuO/ZnO/Al2O3改性催化剂上CH3OH重整制氢的研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210308003
引用本文: 王康, 李涛, 张海涛. CuO/ZnO/Al2O3改性催化剂上CH3OH重整制氢的研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210308003
WANG Kang, LI Tao, ZHANG Haitao. CH3OH Reforming for Hydrogen over CuO/ZnO/Al2O3 Modified Catalyst[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210308003
Citation: WANG Kang, LI Tao, ZHANG Haitao. CH3OH Reforming for Hydrogen over CuO/ZnO/Al2O3 Modified Catalyst[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210308003

CuO/ZnO/Al2O3改性催化剂上CH3OH重整制氢的研究

doi: 10.14135/j.cnki.1006-3080.20210308003
详细信息
    作者简介:

    王康:王 康(1992—),男,安徽蚌埠人,硕士生,主要研究方向为碳一化工。E-mail:921924873@qq.com

    通讯作者:

    李 涛,E-mail:tli@ecust.edu.cn

  • 中图分类号: TQ013.2

CH3OH Reforming for Hydrogen over CuO/ZnO/Al2O3 Modified Catalyst

  • 摘要: 探讨了反应条件对甲醇水蒸气重整制氢反应的响,进行甲醇水蒸气重整制氢反应本征动力学研究。采用Langmuir-Hinshelwood型双速率动力学模型方程对本征动力学实验数据进行拟合,反应器出口产物气体中CO和CO2摩尔流率的模型计算值与实验值比较吻合,双速率模型能够适用。考察CuO/ZnO/Al2O3改性催化剂在200 ℃和300 ℃下的失活现象,催化剂表征结果表明,催失活的主要原因除热烧结外,催化剂比表面积减小、介孔比例减少、活性组分CuO的流失、CuO晶粒变大也是催化剂失活的具体原因,高温反应中产生的高含量CO没有对催化剂的失活产生明显影响。

     

  • 图  1  催化剂粒径对内扩散的影响(a)和液时空速对外扩散的影响(b)

    Figure  1.  Effect of particle size of catalyst on internal diffusion(a) and Effect of LHSV on external diffusion (b)

    图  2  温度对反应结果的影响

    Figure  2.  Effect of temperature on reaction results

    图  3  水醇物质的量之比对反应结果的影响

    Figure  3.  Effect of H2O/CH3OH molar ratio on reaction results

    图  4  液时空速对反应结果的影响

    Figure  4.  Effect of LHSV on reaction results

    图  5  反应器出口CO2(a)、CO(b)摩尔流率实验值与计算值的比较

    Figure  5.  Comparison of experimental and calculated molar flow rates of CO2(a) and CO(b) at reactor outlet

    图  6  催化剂活性与时间关系

    Figure  6.  Relationship between catalyst activity and time

    图  7  样品催化剂的等温吸附脱附曲线

    Figure  7.  N2 adsorption and desorption isotherms of catalyst

    图  8  样品催化剂的孔径分布曲线

    Figure  8.  The pore size distribution curve of sample catalyst

    图  9  样品催化剂的XRD图

    Figure  9.  XRD diagram of sample catalyst

    图  10  样品催化剂的CO-TPD图

    Figure  10.  CO-TPD diagram of sample catalyst

    表  1  甲醇水蒸气重整制氢本征动力学实验数据

    Table  1.   Experimental data of the intrinsic kinetics of hydrogen production via methanol-steam

    No.n(H2O)∶n(CH3OH)T/KLHSV/h−1FCH3OH/(mol·h−1)FCO2/(mol·h−1)FCO/(mol·h−1)
    11.0473.850.60.02050.01549.8448×10-5
    21.0494.253.00.10150.06714.9177×10-4
    31.0513.655.40.16960.13442.2848×10-3
    41.0534.257.80.26590.25271.3254×10-2
    51.0552.7510.20.37800.33813.9876×10-2
    61.2473.753.00.09570.03629.6495×10-5
    71.2492.155.40.17230.10254.5281×10-4
    81.2512.257.80.25390.20521.8352×10-3
    91.2532.1510.20.32960.31856.4057×10-3
    101.2552.250.60.02150.01803.5035×10-3
    111.4473.455.40.16230.04091.1377×10-4
    121.4493.857.80.23990.10334.2425×10-4
    131.4513.4510.20.31290.22901.6716×10-3
    141.4532.350.60.02150.01912.4027×10-3
    151.4553.153.00.09570.08649.2942×10-3
    161.6473.657.80.22000.05151.2969×10-4
    171.6492.8510.20.28810.14635.4197×10-4
    181.6513.450.60.01610.01547.1376×10-4
    191.6533.253.00.08360.07563.1437×10-3
    201.6552.755.40.16590.15461.1266×10-2
    211.8474.2510.20.27600.05671.1231×10-4
    221.8494.150.60.01840.01813.3210×10-4
    231.8513.453.00.10250.10081.6955×10-3
    241.8532.755.40.14710.14363.4834×10-3
    251.8552.657.80.18830.17657.0671×10-3
    下载: 导出CSV

    表  2  动力学参数估值

    Table  2.   Estimated parameters for the kinetic model

    Parameter${k}_{\rm SR}^{0}$${k}_{\rm RWGS}^{0}$${E}_{\rm SR}$${E}_{\rm RWGS}$${K}_{ {\rm CH}_{3}{\rm O}^{\left(1\right)} }^{0}$${K}_{ {\rm HCOO}^{\left(1\right)} }^{0}$${K}_{ {\rm OH}^{\left(1\right)} }^{0}$${K}_{ {\rm H}^{\left(1a\right)} }^{0}$
    Estimated value8.7×1093.2×108 100.379.5−32.1231.9−54.6 −127.2
    LL1)6.8×1092.5×10880.767.6−37.3204.1−61.8−145.3
    UL2)10.6×1093.9×108119.991.4−26.9259.7−47.4−109.1
    1)LL为95%置信区间的下限值;2)UL为95%置信区间的上限值
    下载: 导出CSV

    表  3  样品催化剂的结构参数

    Table  3.   Structure parameters of sample catalyst

    ProjectSBET/(m2·g−1)Pore volume/(cm3·g−1)Pore size/nmCrystallite size of CuO/nmCrystallite size of Cu/nm
    Sample 1#101.080.197.175.8-
    Sample 2#57.380.2310.898.516.3
    Sample 3#84.690.2013.747.911.0
    下载: 导出CSV

    表  4  催化剂中主要元素质量分数

    Table  4.   Mass fraction of main elements in catalyst

    Elementw/%
    Sample 1#Sample 2#Sample 3#
    Cu42.3241.1540.23
    O28.9120.7121.44
    Zn14.4413.6213.85
    C9.077.578.09
    Al5.073.694.04
    下载: 导出CSV
  • [1] SAZALI N. Emerging technologies by hydrogen: A review[J]. International Journal of Hydrogen Energy, 2020, 44(38): 18753-18771.
    [2] ALINE L. Hydrogen Technology[M]. Germany: Springer Berlin Heidelberg, 2008.
    [3] MATSUMURA Y, ISHIBE H. Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen[J]. Journal of Molecular Catalysis A Chemical, 2011, 345(1/2): 44-53. doi: 10.1016/j.molcata.2011.05.017
    [4] LEE J K, KO J B, KIM D H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: Kinetics and effectiveness factor[J]. Applied Catalysis A: General, 2004, 278(1): 25-35. doi: 10.1016/j.apcata.2004.09.022
    [5] AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation[J]. Journal of Power Source, 2002, 106(12): 249-257.
    [6] YONGTAEK, CHOI, STENGER, et al. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(4): 259-269. doi: 10.1016/S0926-3373(02)00054-1
    [7] BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999, 51(3): 521-533.
    [8] 李言浩, 马沛生, 苏旭, 等. 铜系催化剂上甲醇蒸气转化制氢过程的原位红外研究[J]. 催化学报, 2003, 24(2): 93-96. doi: 10.3321/j.issn:0253-9837.2003.02.005
    [9] TESSER R, SERIO M D, SANTACESARIA E. Methanol steam reforming: A comparison of different kinetics in the simulation of a packed bed reactor[J]. Chemical Engineering Journal, 2009, 154(1/3): 69-75.
    [10] IDEM R O, BAKHSHI N N. Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst[J]. Chemical Engineering Science, 1996, 51(14): 3697-3708. doi: 10.1016/0009-2509(96)00008-5
    [11] PURNAMA H, RESSLER T, JENTOFT R E, et al. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Applied Catalysis A: General, 2004, 259(1): 83-94. doi: 10.1016/j.apcata.2003.09.013
    [12] PEPPLEY B A, AMPHLETT J C, KEAMS L M, et al. Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts: Part 2. A comprehensive kinetic model[J]. Applied Catalysis A: General, 1999, 179(1): 31-49.
    [13] TWIGG M V, SPENCER M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis[J]. Topics in Catalysis, 2003, 22(3/4): 191-203.
    [14] SANDRA S, JOSE M, SOUSA, et al. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst: Part I. Kinetic modelling[J]. Chemical Engineering Science, 2011, 66(20): 4913-4921. doi: 10.1016/j.ces.2011.06.063
    [15] AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling[J]. Applied Catalysis A: General, 2005, 279(1): 155-164.
    [16] SILVA H, MATEOS-PEDRERO C, RIBEIRINHA P, et al. Low-temperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115(1): 321-339. doi: 10.1007/s11144-015-0846-z
    [17] PATEL S, PANT K K. Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol[J]. Chemical Engineering Science, 2007, 62(18/20): 5425-5435.
    [18] 车轶菲, 李涛, 张海涛. Cu/ZnO/Al2O3改性催化剂上CO2加氢制甲醇的本征动力学[J]. 华东理工大学学报(自然科学版), 2020(3): 326-333.
    [19] APOORVA M, RANJEKAR, GANAPATI D, et al. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113.
    [20] KURTZ M, WILMER H, GENGER T, et al. Deactivation of supported copper catalysts for methanol synthesis[J]. Catalysis Letters, 2003, 86(1/3): 77-80.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  337
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 网络出版日期:  2021-04-27

目录

    /

    返回文章
    返回