高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

高层综合中面向运算器电源门控技术的低能耗调度算法

姚蔓婷 邱源 柳宜川 袁伟娜 汪楠

姚蔓婷, 邱源, 柳宜川, 袁伟娜, 汪楠. 高层综合中面向运算器电源门控技术的低能耗调度算法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210308002
引用本文: 姚蔓婷, 邱源, 柳宜川, 袁伟娜, 汪楠. 高层综合中面向运算器电源门控技术的低能耗调度算法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210308002
YAO Manting, QIU yuan, LIU Yichuan, YUAN Weina, WANG Nan. An Novel Scheduling Algorithm for Functional Unit Power Gating in High-Level Synthesis[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210308002
Citation: YAO Manting, QIU yuan, LIU Yichuan, YUAN Weina, WANG Nan. An Novel Scheduling Algorithm for Functional Unit Power Gating in High-Level Synthesis[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210308002

高层综合中面向运算器电源门控技术的低能耗调度算法

doi: 10.14135/j.cnki.1006-3080.20210308002
基金项目: 国家自然科学基金青年科学基金(61604054);上海航天科技创新基金(SAST-2017-112)
详细信息
    作者简介:

    姚蔓婷(1996年--),女,安徽芜湖人,硕士生,主要研究方向为集成电路设计自动化。E-mail:mantingyao@163.com

    通讯作者:

    汪楠,E-mail:wangnan@ecust.edu.cn

  • 中图分类号: TN47

An Novel Scheduling Algorithm for Functional Unit Power Gating in High-Level Synthesis

  • 摘要: 电源门控技术是近期广泛采用的低能耗电路设计技术,它能够通过对模块电路的电源进行合理的开关从而实现电路能耗的优化。针对细粒度电源门控技术,本文在高层综合中通过对操作进行合理的调度以降低运算器的能耗。首先分析了电源门控技术下运算器的突破点,并将能耗优化问题转化为调度中的间隔时长优化问题;然后分析了不同调度结果下的空闲间隙的惩罚时长;最后将操作调度至惩罚时长最小的时钟周期。实验结果表明,本文算法能够在不增加电路面积以及工作时延的条件下较为显著地减少电路的能耗,从而为星载平台设备提供更好的设计结果。

     

  • 图  1  电源门控电路示意图

    Figure  1.  Schematic diagram of power-gating circuit

    图  2  开关运算器电源时的能耗分析

    Figure  2.  Energy consumption analysis of power gating a functional unit

    图  3  调度结果对电源能耗的影响

    Figure  3.  Influence of scheduling results on power consumption

    表  1  运算器漏电能耗仿真结果

    Table  1.   Simulation results of leakage energy consumption of functional units

    Functional unitFrequency/ MHz$L{E_{\rm{cyc}} }$/fJ$L{E_{\rm{pg\_cyc}} }$/fJDelay/cycle
    ALU3303.80.11
    Multiplier26.30.62
    下载: 导出CSV

    表  2  $t_{\rm{oh}}^* = 3$时钟周期,$t_{\rm{oh}}^ + = 8$时钟周期时的能耗优化结果

    Table  2.   The results of leakage energy reduction when $t_{\rm{oh}}^* = 3$ cycle, $t_{\rm{oh}}^ + = 8$ cycle

    DFG${R_c}$/(+,*)${t_c}$TLE/fJOursFDS
    ER/fJRatio/%ER/fJRatio/%
    ar(1,1)
    (2,2)
    34
    19
    1023
    1144
    16
    31
    1.6
    2.7
    0
    22
    0
    1.9
    ellip(1,1)
    (2,1)
    28
    24
    843
    746
    77
    52
    9.1
    7.0
    77
    26
    9.1
    3.4
    mpeg(1,1)
    (2,1)
    49
    38
    1475
    1288
    591
    358
    40.1
    27.8
    591
    334
    40.1
    25.9
    fft(1,1)
    (2,2)
    106
    57
    3191
    3431
    2134
    1762
    66.9
    51.4
    1866
    1493
    58.5
    43.5
    ran0(1,1)
    (2,2)
    74
    38
    2227
    2288
    728
    765
    32.7
    33.4
    617
    676
    27.7
    29.6
    ran1(1,1)
    (2,2)
    137
    69
    4124
    4154
    1957
    2053
    47.5
    49.4
    1810
    1893
    43.9
    45.6
    avg.30.827.4
    下载: 导出CSV

    表  3  $t_{\rm{oh}}^* = 5$时钟周期,$t_{\rm{oh}}^ + = 12$时钟周期时的能耗优化结果

    Table  3.   The results of leakage energy reduction when $t_{\rm{oh}}^* = 5$ cycle, $t_{\rm{oh}}^ + = 12$ cycle

    DFG${R_c}$(+,*)${t_c}$TLE/fJOursFDS
    ER/fJRatio/%ER/fJRatio/%
    ar(1,1)
    (2,2)
    34
    19
    1023
    1144
    4
    17
    0.4
    1.5
    0
    0
    0
    0
    ellip(1,1)
    (2,1)
    28
    24
    843
    746
    53
    15
    6.3
    2.0
    26
    0
    3.1
    0
    mpeg(1,1)
    (2,1)
    49
    38
    1475
    1288
    437
    248
    29.6
    19.3
    437
    231
    29.6
    18.0
    fft(1,1)
    (2,2)
    106
    57
    3191
    3431
    1965
    1537
    61.6
    44.8
    1496
    1165
    46.9
    33.4
    ran0(1,1)
    (2,2)
    74
    38
    2227
    2288
    576
    732
    25.9
    32.0
    437
    463
    19.6
    20.2
    ran1(1,1)
    (2,2)
    137
    69
    4124
    4154
    1738
    1749
    42.1
    42.1
    1373
    1259
    33.3
    30.3
    avg.25.619.5
    下载: 导出CSV
  • [1] SANYAL A, RASTOGI A, CHEN W, et al. An efficient technique for leakage current estimation in nanoscaled CMOS circuits incorporating self-loading effects[J]. IEEE Transactions on Computers, 2010, 59(7): 922-932. doi: 10.1109/TC.2010.75
    [2] 温东新, 杨孝宗, 王玲. 一种VLSI高层综合低功耗设计方案及实现[J]. 计算机研究与发展, 2007, 44(7): 1259-1264.
    [3] 王磊磊, 王璐. 电源门控技术中的电压噪声优化方案[J]. 西安电子科技大学学报(自然科学版), 2019, 46(5): 48-54, 90.
    [4] SUMANTA P. Rescheduling of power gating instructions for reduction of in-rush current[C]// 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID). USA: IEEE Computer Society, 2018: 25-30.
    [5] MOHANKUMAR N, SHANKAR A. Low power implementation of DTMF chip by using power gating technique with merge flops[J]. Journal of Engineering and Applied Sciences, 2018, 13(8): 6335-6340.
    [6] SATHANUR A, BENINI L, MACII A, et al. Row-based power-gating: A novel sleep transistor insertion methodology for leakage power optimization in nanometer CMOS circuits[J]. IEEE Transactions on Very Large Scale Integration Systems, 2011, 19(3): 469-482. doi: 10.1109/TVLSI.2009.2035448
    [7] KAHNG A B, KANG S, PARK B. Active-mode leakage reduction with data-retained power gating[C]// 2013 Design, Automation & Test in Europe Conference & Exhibition. France: IEEE, 2013: 1209-1214.
    [8] SINKAR A, PARK T, KIM N S. Clamping virtual supply voltage of power-gated circuits for active leakage reduction and gate-oxide reliability improvement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 21(3): 580-584.
    [9] REIMANN T, SZE C C N, REIS R. Gate sizing and threshold voltage assignment for high performance microprocessor designs[C]//The 20th Asia and South Pacific Design Automation Conference. Japan: IEEE, 2015: 214-219.
    [10] RELE S, PANDE S, ONDER S, et al. Optimizing static power dissipation by functional units in superscalar processors[C]// Proceedings of the 11th International Conference on Compiler Construction. USA: ACM, 2002: 261-275.
    [11] HU Z G, BUYUKTOSUNOGLU A, SRINIVASA V, et al. Microarchitectureal techniques for power gating of execution units[C]//Proceedings of the 2004 International Symposium on Low Power Electronics and Design. USA: IEEE, 2004: 32-37.
    [12] HENRY M, NAZHANDALI L. NEMS-based functional unit power-gating: Design, analysis, and optimization[J]. IEEE Transactions on Circuits and Systems, 2013, 60(2): 290-302. doi: 10.1109/TCSI.2012.2215785
    [13] YEH C, CHANG K, CHEN T, et al. Maintaining performance on power-gating of microprocessor functional units by using a predictive pre-wakeup strategy[J]. ACM Transactions on Architecture and Code Optimization, 2011, 8(3): 16-27,.
    [14] KANNAN D, SHRIVASTAVA A, MOHAN V, et al. Temperature and process variations aware power gating of functional units[C]// 21st International Conference on VLSI Design. India: IEEE, 2008: 515-520.
    [15] KOSHIBA A, WADA M, SAKAMOTO R, et al. A fine-grained power gating control on Linux monitoring power consumption of processors functional units[J]. IEICE Transactions on Electronics, 2015, E98-C(7): 559-568. doi: 10.1587/transele.E98.C.559
    [16] ZHAO L, DAISUKE L, KIMIYOSHT U. Design and implementation fine-grained power gating on microprocessor functional units[J]. IPSJ Transactions on System LSI Design Methodology, 2011, 64: 182-192.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  51
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 网络出版日期:  2021-06-21

目录

    /

    返回文章
    返回