高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

壳聚糖仿生粘合剂的一步原位制备及性能研究

刘慧清 张鹏 陈河操 张春亚 郭旭虹 王杰

刘慧清, 张鹏, 陈河操, 张春亚, 郭旭虹, 王杰. 壳聚糖仿生粘合剂的一步原位制备及性能研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210307001
引用本文: 刘慧清, 张鹏, 陈河操, 张春亚, 郭旭虹, 王杰. 壳聚糖仿生粘合剂的一步原位制备及性能研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210307001
LIU Huiqing, ZHANG Peng, CHEN Hecao, ZHANG Chunya, GUO Xuhong, WANG Jie. One Step in Situ Preparation and Properties of Catechol-Chitosan Adhesive[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210307001
Citation: LIU Huiqing, ZHANG Peng, CHEN Hecao, ZHANG Chunya, GUO Xuhong, WANG Jie. One Step in Situ Preparation and Properties of Catechol-Chitosan Adhesive[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210307001

壳聚糖仿生粘合剂的一步原位制备及性能研究

doi: 10.14135/j.cnki.1006-3080.20210307001
基金项目: 国家自然科学基金(51403062)
详细信息
    作者简介:

    刘慧清(1995—),男,福建人,硕士生,主要研究方向:生物高分子材料。E-mail:chen7410@foxmail.com

    通讯作者:

    王 杰,E-mail:jiewang2010@ecust.edu.cn

  • 中图分类号: Q819

One Step in Situ Preparation and Properties of Catechol-Chitosan Adhesive

  • 摘要: 邻苯二酚可赋予组织粘合剂优异的耐湿粘附能力。凭借一步原位法,仅需壳聚糖(CS)的Fe3+溶液与3,4-二羟基苯甲醛(DBA)溶液的机械混合,通过CS与DBA间的席夫碱反应、Fe3+与DBA间的氧化配位作用,即可实现粘合剂的快速制备。所得粘合剂表现出可控的成胶时间、粘合强度、流变性质,以及优异的表面适应性与稳定性。较席夫碱还原法,本法可获得更优异的粘合强度(48.8 kPa),且制备时长缩短至几分钟,为新型粘合剂的快速制备提供了重要途径。

     

  • 图  1  CS-DBA(a)与CCS(b)的合成路线图

    Figure  1.  Synthesis process of CS-DBA (a) and CCS (b) polymer

    图  2  CS-DBA(a),CCS(b)的紫外光谱图;DBA紫外标准曲线(c);不同取代度CCS产物的紫外光谱(d)

    Figure  2.  UV-vis spectra of CS-DBA (a) and CCS (b); The standard curve of DBA solution (c); Ultraviolet spectra of CCS products with different degree of substitution (d)

    图  3  壳聚糖,CS-DBA,CCS的红外光谱图

    Figure  3.  FT-IR spectra of CS, CS-DBA and CCS

    图  4  CCS聚合物质量分数(a),Fe3+浓度(b)对CCS-Fe粘合剂成胶时间的影响;CS质量分数(c),DBA浓度(d),Fe3+浓度(e)对CS-DBA-Fe粘合剂成胶时间的影响

    Figure  4.  The influence of CCS polymer mass fraction (c) and Fe3+ concentration (b) on the gelation time of CCS-Fe adhesive; the influence of CS mass fraction (c), DBA concentration (d) and Fe3+ concentration (e) on the gelation time of CS-DBA-Fe adhesive

    图  5  CS-DBA-Fe水凝胶的流变性能分析(A);NaIO4共价交联水凝胶与Fe3+双重交联水凝胶的流变性能比较(B)

    Figure  5.  Rheological analysis of CS-DBA-Fe hydrogel (A); Comparison of rheological properties between NaIO4 covalently cross-linked hydrogel and Fe3+ oxidation-coordination cross-linked hydrogel (B)

    图  7  CS-DBA-Fe粘合剂的材料表面适应性(a);CS-DBA-Fe与CCS-Fe的粘合强度测定(b)

    Figure  7.  material surface adaptability of CS-DBA-Fe adhesive (a); Determination of adhesion strength between CS-DBA -Fe and CCS-Fe (b)

    图  6  CS-DBA-Fe粘合剂的溶胀度测试

    Figure  6.  Swelling test of CS-DBA-Fe adhesive

    表  1  不同取代度CCS胶前体的合成

    Table  1.   Synthesis of CCS precursor with different degree of substitution (DS)

    CSDBA (molar ratio)CS/gDBA/gDS/%
    1∶10.20000.17157.660
    1∶30.20000.514711.20
    1∶50.20000.857913.37
    1∶70.20001.20113.95
    下载: 导出CSV
  • [1] YAVVARI P S, SRIVASTAVA A. Robust, self-healing hydrogels synthesised from catechol rich polymers[J]. Journal of Materials Chemistry B Materials for Biology & Medicine, 2015, 3: 899-910.
    [2] 王莉, 汪刘建, 吉亚丽. 邻苯二酚基团改性壳聚糖组织胶黏剂的制备和表征[J]. 功能高分子学报, 2017, 30(01): 59-66.
    [3] XU W H, LIU K B, LI T, et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn[J]. Journal of Biomedical Materials Research. Part A, 2019, 107A: 742-754.
    [4] 陈曦, 俞明珠, 刘剑, 等. 绿色化学方法合成儿茶酚-壳聚糖水凝胶的应用[J]. 厦门大学学报(自然版), 2016, 55(002): 178-183.
    [5] YANG C, GAO L, LIU X, et al. Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release[J]. Journal of Biomedical Materials Research Part A, 2019, 107A: 1909-1916.
    [6] LIANG Y, ZHAO X, HU T, et al. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing[J]. Small, 2019, 15: 1900046. doi: 10.1002/smll.201900046
    [7] WANG R, LI J Z, CHEN W, et al. A Biomimetic Mussel-Inspired epsilon-Poly-L-lysine Hydrogel with Robust Tissue-Anchor and Anti-Infection Capacity[J]. Advanced Functional Materials, 2017, 27(8): 1604894. doi: 10.1002/adfm.201604894
    [8] CHEN W, WANG R, XU T T, et al. A mussel-inspired poly(gamma-glutamic acid) tissue adhesive with high wet strength for wound closure[J]. Journal of Materials Chemistry B Materials for Biology & Medicine, 2017, 5: 5668-5678.
    [9] RAPP M V, MAIER G P, DOBBS H A, et al. Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces[J]. Journal of the American Chemical Society, 2016, 138: 9013-9016. doi: 10.1021/jacs.6b03453
    [10] GUO Z W, NI K F, WEI D Z, et al. Fe3+-induced oxidation and coordination cross-linking in catechol–chitosan hydrogels under acidic pH conditions[J]. Rsc Advances, 2015, 5(47): 37377-37384. doi: 10.1039/C5RA03851K
    [11] SANANDIYA N D, LEE S Y, RHO S C, et al. Tunichrome-inspired pyrogallol functionalized chitosan for tissue adhesion and hemostasis[J]. Carbohydrate Polymers, 2019, 208: 77-85. doi: 10.1016/j.carbpol.2018.12.017
    [12] ZHONG Y J, WANG Jie, YUAN Z Y, et al. A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking[J]. Colloids and Surfaces B Biointerfaces, 2019, 179: 462-469. doi: 10.1016/j.colsurfb.2019.03.044
    [13] HOU J X, LI C, GUAN Y, et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties[J]. Polymer Chemistry, 2015, 6(12): 2204-2213. doi: 10.1039/C4PY01757A
    [14] WAN X B, MU Y B. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone[J]. Macromolecular rapid communications: Publishing the newsletters of the European Polymer Federation, 2016, 37(6): 545-550.
    [15] NGHI T N, LONG V N, NAM M T, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Materials Science & Engineering C, 2019, 103: 109670.
    [16] KUMAR M, MUZZARELLI R, MUZZARELLI C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. Chemical Reviews, 2004, 104(12): 6017-84. doi: 10.1021/cr030441b
    [17] ANDREA M, MIGNECO L M, PIETRELLI L, et al. Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis[J]. Carbohydrate Polymers, 2018, 173: 273-281.
    [18] KAYA I, VILAYETOGLU A R, MART H. The synthesis and properties of oligosalicylaldehyde and its Schiff base oligomers[J]. 2001, 42(11): 4859-4865.
    [19] KASAAI M R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers, 2008, 71(4): 497-508. doi: 10.1016/j.carbpol.2007.07.009
    [20] 高玲玲, 王振宇, 饶伟丽, 等. 骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析[J]. 农业工程学报, 2018, 34(03): 285-291.
    [21] JEEVITHAN E, WU W, WANG N P, et al. Isolation, purification and characterization of pepsin soluble collagen isolated from silvertip shark (Carcharhinus albimarginatus) skeletal and head bone[J]. Process Biochemistry, 2014, 49(10): 1767-1777. doi: 10.1016/j.procbio.2014.06.011
    [22] HOLTEN-ANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. doi: 10.1073/pnas.1015862108
    [23] LEE B P, DALSIN J L, MESSERSMITH P B. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels[J]. Biomacromolecules, 2002, 3(5): 1038-1047. doi: 10.1021/bm025546n
    [24] PEPPAS N. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology[J]. Advanced Materials, 2010, 18(11): 1345-1360.
    [25] 何新益, 夏文水. 盐酸处理对壳聚糖的降解作用研究[J]. 食品与机械, 2007, 23(05): 45-48. doi: 10.3969/j.issn.1003-5788.2007.05.013
    [26] BURKE S A, RITTER-JONES M, LEE B P, et al. Thermal gelation and tissue adhesion of biomimetic hydrogels[J]. Biomedical Materials, 2007, 2(4): 203-210. doi: 10.1088/1748-6041/2/4/001
    [27] CHIVERS R A, WOLOWACZR G. The strength of adhesive-bonded tissue joints[J]. International Journal of Adhesion and Adhesives, 1997, 17(2): 127-132. doi: 10.1016/S0143-7496(96)00041-3
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-07
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回