One-Step in situ Preparation and Properties of Chitosan-Based Bioadhesive
-
摘要: 邻苯二酚可赋予组织黏合剂优异的耐湿黏附能力。利用一步原位法,仅需壳聚糖(CS)的Fe3+溶液与3,4-二羟基苯甲醛(DBA)溶液的机械混合,通过CS与DBA之间的席夫碱反应、Fe3+与DBA之间的氧化配位作用,即可实现黏合剂的快速制备。所得黏合剂表现出可控的成胶时间、黏合强度、流变性质以及优异的表面适应性与稳定性。较传统的席夫碱-还原法,一步原位法可获得更优异的黏合强度(48.8 kPa),且制备时长缩短至几分钟,为新型黏合剂的快速制备提供了重要途径。Abstract: In this paper, through the novel one-step strategy, once mechanical mixing between chitosan polymer (dissolved in Fe3+ solution with predetermined concentration, termed as CS-Fe) and 3,4-dihydroxybenzaldehyde (DBA) solution was completed, a brown hydrogel (termed as CS-DBA-Fe) could be instantly prepared in situ as results of Schiff base reaction between CS and DBA, plus oxidation-coordination interaction between Fe3+ and catechol groups. Multiple interactions, including coordination bond, covalent bond, hydrogen bond, π-π and π-cation interaction inside the CS-DBA-Fe crosslinking system were achieved simultaneously, leading to drastic versatile adhesion. What’s more, the obtained hydrogels also exhibited various merits, including tunable gelation time, adhesion strength and rheological properties, as well as outstanding surface adaptability and stability, rendering it a promising candidate of tissue adhesion materials for emergent situation. Lastly, though several traditional methods like reductive amination strategy (RA strategy) were developed, they usually involve prolonged reaction time, harsh reaction conditions and complicated purifying procedures. Herein, hydrogels prepared by RA strategy (termed as CCS-Fe) were used as the benchmark to further evaluate the adhesion strength of CS-DBA-Fe adhesives. Compared with the RA strategy, adhesives obtained by this method not only had better bonding strength (up to 48.8 kPa), and the preparation time was greatly shortened (from 72 h to less than 10 min). The one-step in-situ preparation of tissue adhesive provides an important alternative for the facile preparation of biomimetic tissue adhesives.
-
Key words:
- catechol /
- chitosan /
- tissue adhesive /
- hydrogel /
- one-step in situ preparation
-
图 4 CCS聚合物质量分数(a)、Fe3+浓度(b)对CCS-Fe黏合剂成胶时间的影响;CS质量分数(c)、DBA浓度(d)、Fe3+浓度(e)对CS-DBA-Fe黏合剂成胶时间的影响
Figure 4. Influence of CCS polymer mass fraction (a) and Fe3+ concentration (b) on the gelation time of CCS-Fe adhesive; Influence of CS mass fraction (c), DBA concentration (d) and Fe3+ concentration (e) on the gelation time of CS-DBA-Fe adhesive
表 1 nCS∶nDBA对CCS胶前体接枝率的影响
Table 1. Effect of nCS : nDBA on the graft yield of CCS precursor
nCS∶nDBA mCS/g mDBA/g DS/% 1∶1 0.2000 0.1715 7.660 1∶3 0.2000 0.5147 11.20 1∶5 0.2000 0.8579 13.37 1∶7 0.2000 1.2010 13.95 -
[1] YAVVARI P S, SRIVASTAVA A. Robust, self-healing hydrogels synthesised from catechol rich polymers[J]. Journal of Materials Chemistry B: Materials for Biology & Medicine, 2015, 3: 899-910. [2] 王莉, 汪刘建, 吉亚丽. 邻苯二酚基团改性壳聚糖组织胶黏剂的制备和表征[J]. 功能高分子学报, 2017, 30(1): 59-66. [3] XU W H, LIU K B, LI T, et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn[J]. Journal of Biomedical Materials Research: Part A, 2019, 107A: 742-754. [4] 陈曦, 俞明珠, 刘剑, 等. 绿色化学方法合成儿茶酚-壳聚糖水凝胶的应用[J]. 厦门大学学报(自然科学版), 2016, 55(2): 178-183. [5] YANG C, GAO L, LIU X, et al. Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release[J]. Journal of Biomedical Materials Research: Part A, 2019, 107A: 1909-1916. [6] LIANG Y, ZHAO X, HU T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J]. Small, 2019, 15: 1900046. doi: 10.1002/smll.201900046 [7] WANG R, LI J Z, CHEN W, et al. A biomimetic mussel-inspired epsilon-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity[J]. Advanced Functional Materials, 2017, 27(8): 1604894. doi: 10.1002/adfm.201604894 [8] CHEN W, WANG R, XU T T, et al. A mussel-inspired poly(gamma-glutamic acid) tissue adhesive with high wet strength for wound closure[J]. Journal of Materials Chemistry B: Materials for Biology & Medicine, 2017, 5: 5668-5678. [9] RAPP M V, MAIER G P, DOBBS H A, et al. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces[J]. Journal of the American Chemical Society, 2016, 138: 9013-9016. doi: 10.1021/jacs.6b03453 [10] GUO Z W, NI K F, WEI D Z, et al. Fe3+-Induced oxidation and coordination cross-linking in catechol-chitosan hydrogels under acidic pH conditions[J]. RSC Advances, 2015, 5(47): 37377-37384. doi: 10.1039/C5RA03851K [11] SANANDIYA N D, LEE S Y, RHO S C, et al. Tunichrome-inspired pyrogallol functionalized chitosan for tissue adhesion and hemostasis[J]. Carbohydrate Polymers, 2019, 208: 77-85. doi: 10.1016/j.carbpol.2018.12.017 [12] ZHONG Y J, WANG Jie, YUAN Z Y, et al. A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking[J]. Colloids and Surfaces B: Biointerfaces, 2019, 179: 462-469. doi: 10.1016/j.colsurfb.2019.03.044 [13] HOU J X, LI C, GUAN Y, et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties[J]. Polymer Chemistry, 2015, 6(12): 2204-2213. doi: 10.1039/C4PY01757A [14] WAN X B, MU Y B. Simple but strong: A mussel-inspired hot curing adhesive based on polyvinyl alcohol backbone[J]. Macromolecular Rapid Communications, 2016, 37(6): 545-550. [15] NGHI T N, LONG V N, NAM M T, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Materials Science and Engineering C, 2019, 103: 109670. [16] KUMAR M, MUZZARELLI R, MUZZARELLI C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. Chemical Reviews, 2004, 104(12): 6017-6084. doi: 10.1021/cr030441b [17] ANDREA M, MIGNECO L M, PIETRELLI L, et al. Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis[J]. Carbohydrate Polymers, 2018, 173: 273-281. [18] KAYA I, VILAYETOGLU A R, MART H. The synthesis and properties of oligosalicylaldehyde and its Schiff base oligomers[J]. 2001, 42(11): 4859-4865. [19] KASAAI M R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers, 2008, 71(4): 497-508. doi: 10.1016/j.carbpol.2007.07.009 [20] 高玲玲, 王振宇, 饶伟丽, 等. 骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析[J]. 农业工程学报, 2018, 34(3): 285-291. [21] JEEVITHAN E, WU W, WANG N P, et al. Isolation, purification and characterization of pepsin soluble collagen isolated from silvertip shark (Carcharhinus albimarginatus) skeletal and head bone[J]. Process Biochemistry, 2014, 49(10): 1767-1777. doi: 10.1016/j.procbio.2014.06.011 [22] HOLTEN-ANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-Induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. doi: 10.1073/pnas.1015862108 [23] LEE B P, DALSIN J L, MESSERSMITH P B. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels[J]. Biomacromolecules, 2002, 3(5): 1038-1047. doi: 10.1021/bm025546n [24] PEPPAS N. Hydrogels in biology and medicine: From molecular principles to bionanotechnology[J]. Advanced Materials, 2010, 18(11): 1345-1360. [25] 何新益, 夏文水. 盐酸处理对壳聚糖的降解作用研究[J]. 食品与机械, 2007, 23(5): 45-48. doi: 10.3969/j.issn.1003-5788.2007.05.013 [26] BURKE S A, RITTER-JONES M, LEE B P, et al. Thermal gelation and tissue adhesion of biomimetic hydrogels[J]. Biomedical Materials, 2007, 2(4): 203-210. doi: 10.1088/1748-6041/2/4/001 [27] CHIVERS R A, WOLOWACZR G. The strength of adhesive-bonded tissue joints[J]. International Journal of Adhesion and Adhesives, 1997, 17(2): 127-132. doi: 10.1016/S0143-7496(96)00041-3 -