高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

CuO、B2O3和Li2O共掺低温烧结BaTiO3陶瓷

成臣 李蔚

成臣, 李蔚. CuO、B2O3和Li2O共掺低温烧结BaTiO3陶瓷[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210301001
引用本文: 成臣, 李蔚. CuO、B2O3和Li2O共掺低温烧结BaTiO3陶瓷[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210301001
CHENG Chen, LI Wei. Low temperature sintering of BaTiO3 ceramics via co-doping with CuO, B2O3 and Li2O[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210301001
Citation: CHENG Chen, LI Wei. Low temperature sintering of BaTiO3 ceramics via co-doping with CuO, B2O3 and Li2O[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210301001

CuO、B2O3和Li2O共掺低温烧结BaTiO3陶瓷

doi: 10.14135/j.cnki.1006-3080.20210301001
详细信息
    作者简介:

    成臣:成 臣(1996-),男,江苏泰州人,硕士生,研究方向为钛酸钡陶瓷。E-mail:chengchenhx@163.com

    通讯作者:

    李 蔚,E-mail:liweiwei@ecust.edu.cn

  • 中图分类号: TQ174.75

Low temperature sintering of BaTiO3 ceramics via co-doping with CuO, B2O3 and Li2O

  • 摘要: 利用CuO、B2O3和Li2O共掺,低温烧结制备了BaTiO3陶瓷,研究随着烧结温度的提高,样品密度、物相组成和显微结构的变化。结果表明:CuO、B2O3和Li2O共掺可有效降低BaTiO3陶瓷的烧结温度。在950 ℃保温2 h可获得密度为5.75 g/cm3(相对密度为95.6%)的四方相的BaTiO3陶瓷,但更高的烧结温度会使样品密度下降,当烧结温度为1100 ℃密度仅为5.23 g/cm3(相对密度为86.9%)。同时,所得BaTiO3陶瓷的显微结构随着烧结温度的提高出现明显变化,晶粒迅速长大。0.7wt%CuO-1.5wt%B2O3-0.3wt%Li2O(BCL)共掺时产生的低共熔相和固溶反应是降低烧结温度的主要原因。

     

  • 图  1  共掺BCL复合添加剂的BaTiO3陶瓷样品在不同温度下烧结的密度变化曲线

    Figure  1.  Density curves of BaTiO3 ceramics with BCL composite additives sintered at different temperatures

    图  2  共掺BCL复合添加剂的BaTiO3陶瓷样品的XRD衍射图:(a)1300 ℃纯BaTiO3陶瓷、(b)850 ℃、(c)900 ℃、(d)950 ℃、(e)1000 ℃、(f)1050 ℃、(g)1100 ℃

    Figure  2.  XRD patterns of BaTiO3 ceramics with BCL composite additives: (a) Pure BaTiO3 ceramics at 1300 ℃、(b) 850 ℃、(c) 900 ℃、(d)950 ℃、(e) 1000 ℃、(f) 1050 ℃、(g) 1100 ℃

    图  3  共掺BCL复合添加剂的BaTiO3陶瓷样品在不同温度下烧结的SEM图:(a)850 ℃、(b)900 ℃、(c)950 ℃、(d)1000 ℃、(e)1050 ℃、(f)1100 ℃

    Figure  3.  SEM images of BaTiO3 ceramics with BCL composite additives sintered at different temperatures:(a)850 ℃、(b)900 ℃、(c)950 ℃、(d)1000 ℃、(e)1050 ℃、>(f)1100 ℃

    图  4  共掺BCL复合添加剂的BaTiO3陶瓷样品在950 ℃的EDS能谱图

    Figure  4.  EDS of BaTiO3 ceramics doped with BCL composite additives at 950 ℃

  • [1] 邓湘云, 李建保, 王晓慧, 等. MLCC的发展趋势及在军用电子设备中的应用[J]. 电子元件与材料, 2006, 25(5): 1-6. doi: 10.3969/j.issn.1001-2028.2006.05.001
    [2] 谢兆军, 朱泽华, 叶中郎. 低温烧结BaTiO3基介电陶瓷的研究进展[J]. 陶瓷学报, 2011, 32(01): 130-134. doi: 10.3969/j.issn.1000-2278.2011.01.027
    [3] XIE X K, CHAO X, WANG J, et al. Tailoring Electrical Properties and the Structure Evolution of (Ba0.85Ca0.15)(Ti0.90Zr0.10)(1-x) Li4xO3 Ceramics with Low Sintering Temperature[J]. Journal of Electronic Materials, 2016, 45(1): 802-811. doi: 10.1007/s11664-015-4206-6
    [4] ZHANG Z, ZHANG J, SHAO S, et al. Influence of CuO Additive on Physical Properties of BaTiO3 Ceramics[J]. Materials Science Forum, 2011, 687: 287-291. doi: 10.4028/www.scientific.net/MSF.687.287
    [5] BEZZI T, CHENNI A, SELLAM F. Effect of B2O3 addition on the Sintering of BaTiO3-CaTiO3 Composite Materials[J]. Journal of Ceramic Processing Research, 2019, 20(6): 617-620. doi: 10.36410/jcpr.2019.20.6.617
    [6] 刘卓, 庞新峰, 郭海, 等. Bi2O3掺杂对BLTN微波介质陶瓷性能影响研究[J]. 电子元件与材料, 2017, 36(11): 12-15. doi: 10.14106/j.cnki.1001-2028.2017.11.002
    [7] ALKATHY M S, RAJU K C. Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 737: 464-476. doi: 10.1016/j.jallcom.2017.12.121
    [8] YIM D K, KIM J R, KIM D W, et al. Microwave dielectric properties and low-temperature sintering of Ba3Ti4Nb4O21 ceramics with B2O3 and CuO additions[J]. Journal of the European Ceramic Society, 2007, 27(8-9): 3053-3057. doi: 10.1016/j.jeurceramsoc.2006.11.029
    [9] 严欣堪, 丁士华, 朱惠, 等. Li2O-B2O3复合掺杂对BaAl2Si2O8陶瓷结构与介电性能的影响[J]. 电子元件与材料, 2020, 39(1): 26-31. doi: 10.14106/j.cnki.1001-2028.2020.01.005
    [10] 荆慧霞, 王亚娟, 张瑜, 等. CuO-Li2CO3共掺杂低温烧结Ba0.6Sr0.4TiO3陶瓷的介电性能[J]. 陕西师范大学学报(自然科学版), 2011, 39(3): 37-40. doi: 10.15983/j.cnki.jsnu.2011.03.004
    [11] ZHAO L, ZHANG B P, ZHOU P F, et al. Piezoelectric and ferroelectric properties of (Ba, Ca)(Ti, Sn)O3 lead-free ceramics sintered with Li2O additives: Analysis of point defects and phase structures[J]. Ceramics International, 2016, 42(1): 1086-1093. doi: 10.1016/j.ceramint.2015.09.035
    [12] GUAN S, YANG H, QIAO G, et al. Effects of Li2CO3 and CuO as Composite Sintering Aids on the Structure, Piezoelectric Properties, and Temperature Stability of BiFeO3-BaTiO3 Ceramics[J]. Journal of Electronic Materials, 2020, 49(10): 6199-6207. doi: 10.1007/s11664-020-08365-7
    [13] 程华容, 朱景川, 全在昊, 等. 残余氧化硼对钛酸锶钡晶胞参数及相变温度的影响[J]. 无机材料学报, 2006, 21(3): 619-626. doi: 10.3321/j.issn:1000-324X.2006.03.017
    [14] 齐建全, 李龙土, 桂治轮. 钛酸钡中的硼间隙及其对PTCR效应的影响[J]. 稀有金属材料与工程, 2004, 33(3): 251-253. doi: 10.3321/j.issn:1002-185X.2004.03.007
    [15] SASTRY B S R, HUMMEL F A. Studies in Lithium Oxide Systems: I, Li2O B2O3–B2O3[J]. Journal of the American Ceramic Society, 2010, 41(1): 7-17.
    [16] 李月明, 张华, 王竹梅, 等. B2O3-CuO掺杂CSLST微波介质陶瓷介电性能研究[J]. 硅酸盐通报, 2012, 31(5): 1072-1075. doi: 10.16552/j.cnki.issn1001-1625.2012.05.027
    [17] ABDULLAEV G K, RZA-ZADE P F, MAMEDOV K S. Physicochemical Study of a Lithium Oxide-Copper(II) Oxide-Boron Oxide Ternary System[J]. Russian Journal of Inorganic Chemistry, 1982, 27(7).
    [18] PETRAKOVSKII G A, SABLINA K A, VELIKANOV D A, et al. Synthesis and magnetic properties of copper metaborate single crystals CuB2O4[J]. Crystallography Reports, 2000, 45(5): 853-856. doi: 10.1134/1.1312935
    [19] 李鹏飞, 靳常青, 肖长江, 等. 高压烧结法合成致密纳米BaTiO3陶瓷结构和铁电性能研究[J]. 高压物理学报, 2007, 21(3): 249-252. doi: 10.3969/j.issn.1000-5773.2007.03.005
    [20] KOYAMA T, NISIYAMA A, NIIHARA K. Effect of Liquid-Forming Additives on the Microstructure of Particulate Reinforced Al2O3 Ceramics[J]. Journal of the Ceramic Society of Japan, 1996, 104(1208): 308-311. doi: 10.2109/jcersj.104.308
  • 加载中
图(4)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回