Low Temperature Sintering of BaTiO3 Ceramics via Co-Doping with CuO, B2O3 and Li2O
-
摘要: 将CuO、B2O3和Li2O共掺,低温烧结制备了BaTiO3陶瓷,探讨了随着烧结温度的提高,BaTiO3陶瓷样品密度、物相组成和显微结构的变化。结果表明:CuO、B2O3和Li2O共掺可有效降低BaTiO3陶瓷的烧结温度;在950 ℃保温2 h可获得密度为5.75 g/cm3(相对密度为95.6%)的四方相的BaTiO3陶瓷,但更高的烧结温度会使样品密度下降,当烧结温度为1100 ℃时样品密度仅为5.23 g/cm3(相对密度为86.9%);所得BaTiO3陶瓷的显微结构随着烧结温度的升高出现明显变化,晶粒迅速长大。0.7%CuO-1.5%B2O3-0.3%Li2O(BCL)(0.7%、1.5%、0.3%为质量分数)共掺时产生的低共熔相和固溶反应是降低烧结温度的主要原因。Abstract: Multilayer capacitors with BaTiO3 as the core dielectric material was known as the most widely used and classic perovskite ferroelectrics. Due to the high sintering temperature of BaTiO3 based ceramics, only noble metal materials could be used as internal electrodes. Therefore, it was of great practical significance to reduce the sintering temperature of BaTiO3 based ceramics to match with the base metal electrode materials with lower melting point, so as to reduce the cost, which had been a research hotspot in this field at home and abroad. In order to reduce the sintering temperature of BaTiO3 ceramics, many methods had been used, among which the simplest and most effective method was to add appropriate sintering additives. In this work, BaTiO3 ceramics were sintered at low temperatures via co-doping with CuO, B2O3 and Li2O. The phase composition, density and microstructure of the ceramics at different sintering temperatures had been investigated. The results showed that co-doping of CuO, B2O3 and Li2O could effectively reduce the sintering temperature of BaTiO3 ceramics. Single tetragonal phase BaTiO3 ceramics with high density of 5.75 g/cm3 could be obtained after sintering at 950 ℃ for 2 h and the relative density was 95.6%, while higher sintering temperature led to the decrease of the density of the ceramics. The density of sample sintered at 1100 ℃ was only 5.23 g/cm3 and the relative density was 86.9%. Meanwhile, the microstructure of BaTiO3 ceramics changed obviously with the increase of sintering temperature, and the grains grew rapidly. The low eutectic phase and solid solution reaction during 0.7%CuO-1.5%B2O3-0.3%Li2O (BCL) co-doping were the main reasons for decreasing sintering temperature.
-
Key words:
- BaTiO3 ceramics /
- CuO /
- B2O3 /
- Li2O /
- low temperature sintering
-
-
[1] 邓湘云, 李建保, 王晓慧, 等. MLCC的发展趋势及在军用电子设备中的应用[J]. 电子元件与材料, 2006, 25(5): 1-6. doi: 10.3969/j.issn.1001-2028.2006.05.001 [2] 谢兆军, 朱泽华, 叶中郎. 低温烧结BaTiO3基介电陶瓷的研究进展[J]. 陶瓷学报, 2011, 32(1): 130-134. doi: 10.3969/j.issn.1000-2278.2011.01.027 [3] XIE X K, CHAO X, WANG J, et al. Tailoring electrical properties and the structure evolution of (Ba0.85Ca0.15)(Ti0.90Zr0.10)(1-x) Li4xO3 ceramics with low sintering temperature[J]. Journal of Electronic Materials, 2016, 45(1): 802-811. doi: 10.1007/s11664-015-4206-6 [4] ZHANG Z, ZHANG J, SHAO S, et al. Influence of CuO additive on physical properties of BaTiO3 ceramics[J]. Materials Science Forum, 2011, 687: 287-291. doi: 10.4028/www.scientific.net/MSF.687.287 [5] BEZZI T, CHENNI A, SELLAM F. Effect of B2O3 addition on the sintering of BaTiO3-CaTiO3 composite materials[J]. Journal of Ceramic Processing Research, 2019, 20(6): 617-620. doi: 10.36410/jcpr.2019.20.6.617 [6] 刘卓, 庞新峰, 郭海, 等. Bi2O3掺杂对BLTN微波介质陶瓷性能影响研究[J]. 电子元件与材料, 2017, 36(11): 12-15. doi: 10.14106/j.cnki.1001-2028.2017.11.002 [7] ALKATHY M S, RAJU K C. Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-State Chemistry and Physics, 2018, 737: 464-476. doi: 10.1016/j.jallcom.2017.12.121 [8] YIM D K, KIM J R, KIM D W, et al. Microwave dielectric properties and low-temperature sintering of Ba3Ti4Nb4O21 ceramics with B2O3 and CuO additions[J]. Journal of the European Ceramic Society, 2007, 27(8/9): 3053-3057. doi: 10.1016/j.jeurceramsoc.2006.11.029 [9] 严欣堪, 丁士华, 朱惠, 等. Li2O-B2O3复合掺杂对BaAl2Si2O8陶瓷结构与介电性能的影响[J]. 电子元件与材料, 2020, 39(1): 26-31. doi: 10.14106/j.cnki.1001-2028.2020.01.005 [10] 荆慧霞, 王亚娟, 张瑜, 等. CuO-Li2CO3共掺杂低温烧结Ba0.6Sr0.4TiO3陶瓷的介电性能[J]. 陕西师范大学学报(自然科学版), 2011, 39(3): 37-40. doi: 10.15983/j.cnki.jsnu.2011.03.004 [11] ZHAO L, ZHANG B P, ZHOU P F, et al. Piezoelectric and ferroelectric properties of (Ba, Ca)(Ti, Sn)O3 lead-free ceramics sintered with Li2O additives: Analysis of point defects and phase structures[J]. Ceramics International, 2016, 42(1): 1086-1093. doi: 10.1016/j.ceramint.2015.09.035 [12] GUAN S, YANG H, QIAO G, et al. Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 ceramics[J]. Journal of Electronic Materials, 2020, 49(10): 6199-6207. doi: 10.1007/s11664-020-08365-7 [13] 程华容, 朱景川, 全在昊, 等. 残余氧化硼对钛酸锶钡晶胞参数及相变温度的影响[J]. 无机材料学报, 2006, 21(3): 619-626. doi: 10.3321/j.issn:1000-324X.2006.03.017 [14] 齐建全, 李龙土, 桂治轮. 钛酸钡中的硼间隙及其对PTCR效应的影响[J]. 稀有金属材料与工程, 2004, 33(3): 251-253. doi: 10.3321/j.issn:1002-185X.2004.03.007 [15] SASTRY B S R, HUMMEL F A. Studies in lithium oxide systems: I, Li2O B2O3-B2O3[J]. Journal of the American Ceramic Society, 2010, 41(1): 7-17. [16] 李月明, 张华, 王竹梅, 等. B2O3-CuO掺杂CSLST微波介质陶瓷介电性能研究[J]. 硅酸盐通报, 2012, 31(5): 1072-1075. doi: 10.16552/j.cnki.issn1001-1625.2012.05.027 [17] PETRAKOVSKII G A, SABLINA K A, VELIKANOV D A, et al. Synthesis and magnetic properties of copper metaborate single crystals CuB2O4[J]. Crystallography Reports, 2000, 45(5): 853-856. doi: 10.1134/1.1312935 [18] 李鹏飞, 靳常青, 肖长江, 等. 高压烧结法合成致密纳米BaTiO3陶瓷结构和铁电性能研究[J]. 高压物理学报, 2007, 21(3): 249-252. doi: 10.3969/j.issn.1000-5773.2007.03.005 [19] KOYAMA T, NISIYAMA A, NIIHARA K. Effect of liquid-forming additives on the microstructure of particulate reinforced Al2O3 ceramics[J]. Journal of the Ceramic Society of Japan, 1996, 104(1208): 308-311. doi: 10.2109/jcersj.104.308 -