• ISSN 1006-3080
• CN 31-1691/TQ

 引用本文: 张航, 雷学林, 何云, 李子璇. 基于有限元仿真的聚酰亚胺切削参数优化[J]. 华东理工大学学报（自然科学版）, 2022, 48(2): 265-272.
ZHANG Hang, LEI Xuelin, HE Yun, LI Zixuan. Optimization of Polyimide Cutting Parameters Based on Finite Element Simulation[J]. Journal of East China University of Science and Technology, 2022, 48(2): 265-272. doi: 10.14135/j.cnki.1006-3080.20210210001
 Citation: ZHANG Hang, LEI Xuelin, HE Yun, LI Zixuan. Optimization of Polyimide Cutting Parameters Based on Finite Element Simulation[J]. Journal of East China University of Science and Technology, 2022, 48(2): 265-272.

## 基于有限元仿真的聚酰亚胺切削参数优化

##### doi: 10.14135/j.cnki.1006-3080.20210210001

###### 通讯作者: 雷学林，E-mail：xuelinlei@ecust.edu.cn
• 中图分类号: TH133.3

## Optimization of Polyimide Cutting Parameters Based on Finite Element Simulation

• 摘要: 采用VUMAT子程序嵌入法，考察了聚酰亚胺高分子材料弹性变形阶段的应力-应变关系，并通过三维热-力耦合有限元模型分析了切削工艺参数对聚酰亚胺铣削过程中切削力、切削温度和切屑形态的影响规律。结果发现：随着进给量的增大，仿真的切削力、切削温度增加或升高，切屑的带状化程度变得严重。随后利用切削实验，验证了仿真模型的有效性与准确性，并获得了聚酰亚胺的最优切削工艺参数：进给量为0.20~0.30 mm/r。

• 图  1  铣削聚酰亚胺的有限元模型

Figure  1.  Finite element model for milling polyimide

图  2  高分子材料应力-应变的曲线与仿真曲线比较

Figure  2.  Comparison of real stress-strain curve and simulation curve of polymer materials

图  3  程序整体流程

Figure  3.  Overall process of the program

图  4  铣削实验设置

Figure  4.  Milling experimental device

图  5  进给量对铣削力的影响

Figure  5.  Effect of feed rate on milling forces

图  6  刀具参考点及对应温度

Figure  6.  Tool reference point and corresponding temperature

图  7  不同进给量条件下的切屑形态

Figure  7.  Chips under different feed rate

图  8  仿真与实验的切削力对比

Figure  8.  Comparison of cutting force between simulation and experiment

图  9  仿真与实验的切削温度对比

Figure  9.  Comparison of cutting temperature between simulation and experiment

图  10  实验切屑形貌(a)及SEM图(b~e)

Figure  10.  Chip morphology and SEM by experiment

•  [1] ZHAO H X, PRIETO L O, ZHOU X Z, et al. Multistimuli responsive liquid‐release in dynamic polymer coatings for controlling surface slipperiness and optical performance[J]. Advanced Materials Interfaces, 2019, 6: 1901028. [2] JIA W H, YANG S R, REN S L, et al. Preparation and tribological behaviors of porous oil-containing polyimide/ hollow mesoporous silica nanospheres composite films[J]. Tribology International, 2020, 145: 106184. [3] 兰中旭, 韦嘉, 俞燕蕾. 耐高温无色透明聚酰亚胺的研究进展[J]. 功能高分子学报, 2020, 33(4): 320-332. [4] WANG F B, BIN Z, WANG Y Q. Milling force of quartz fiber-reinforced polyimide composite based on cryogenic cooling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 2363-2375. [5] 岳彩旭, 蔡春彬, 黄翠, 等. 切削加工过程有限元仿真研究的最新进展[J]. 系统仿真学报, 2016, 28(4): 815-825, 832. [6] 夏晓东, 唐迪, 王业甫, 等. 超精密切削SiCp/Al复合材料有限元仿真研究[J]. 工具技术, 2019, 53(3): 47-50. [7] 秦旭达, 李永行, 王斌, 等. CFRP纤维方向对切削过程影响规律的仿真研究[J]. 机械科学与技术, 2016, 35(3): 472-476. [8] HE Y L, DAVIM J P, XUE H Q. 3D progressive damage based macro-mechanical FE simulation of machining unidirectional FRP composite[J]. Chinese Journal of Mechanical Engineering, 2018, 31(3): 128-143. [9] CHENG H, GAO J Y, KAFKA O L, et al. A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling[J]. Composite Science and Technology, 2017, 153: 18-31. [10] 杨永喜. 聚酰亚胺基多孔含油材料的制备及改性研究[D]. 黑龙江: 哈尔滨工业大学, 2017. [11] 杜茂华, 程正, 王神送, 等. 损伤演化对Ti6Al4V高速切削仿真结果的影响[J]. 航空学报, 2019, 40(7): 279-291. [12] SUHAS B, JACOB B, RYAN S, et al. Constitutive models for the viscoelastic behavior of polyimide membranes at room and deep cryogenic temperatures[J]. Fusion Science and Technology, 2016, 70(2): 332-340. [13] 汪品红. 基于Abaqus子程序的高分子材料本构关系实现[J]. 计算机辅助工程, 2013, 22(S2): 408-410. [14] Zhu Z L, BUCK D, GUO X L, et al. Cutting performance in the helical milling of stone-plastic composite with diamond tools[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 31: 119-129.

##### 计量
• 文章访问数:  216
• HTML全文浏览量:  147
• PDF下载量:  20
• 被引次数: 0
##### 出版历程
• 收稿日期:  2021-02-10
• 网络出版日期:  2021-06-24
• 刊出日期:  2022-04-22

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈