高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于相似性聚类的交通流概率组合预测模型

王旭鹏 王梦灵

王旭鹏, 王梦灵. 基于相似性聚类的交通流概率组合预测模型[J]. 华东理工大学学报(自然科学版), 2022, 48(3): 381-387. doi: 10.14135/j.cnki.1006-3080.20210208001
引用本文: 王旭鹏, 王梦灵. 基于相似性聚类的交通流概率组合预测模型[J]. 华东理工大学学报(自然科学版), 2022, 48(3): 381-387. doi: 10.14135/j.cnki.1006-3080.20210208001
WANG Xupeng, WANG Mengling. Combination Forecast Model of Traffic Flow Probability Based on Similarity Clustering[J]. Journal of East China University of Science and Technology, 2022, 48(3): 381-387. doi: 10.14135/j.cnki.1006-3080.20210208001
Citation: WANG Xupeng, WANG Mengling. Combination Forecast Model of Traffic Flow Probability Based on Similarity Clustering[J]. Journal of East China University of Science and Technology, 2022, 48(3): 381-387. doi: 10.14135/j.cnki.1006-3080.20210208001

基于相似性聚类的交通流概率组合预测模型

doi: 10.14135/j.cnki.1006-3080.20210208001
基金项目: 国家自然科学基金(61673177);上海市“科技创新计划”人工智能专项(19DZ1209003);上海市经济和信息化委员会人工智能创新发展专项资金计划(2019-RGZN-01015)
详细信息
    作者简介:

    王旭鹏(1995—),男,浙江宁波人,硕士生,主要研究领域为交通流预测、交通大数据挖掘。E-mail:461520312@qq.com

    通讯作者:

    王梦灵,E-mail:wml_ling@ecust.edu.cn

  • 中图分类号: TP391.9

Combination Forecast Model of Traffic Flow Probability Based on Similarity Clustering

  • 摘要: 针对交通流呈现出周期性动态变化特征,充分挖掘并利用交通流数据潜在的时段相似性特征,提出了一种基于相似性聚类的交通流概率组合模型。首先采用自适应k-means++聚类方法对历史交通流数据进行聚类,对具有周期相似性的交通流数据进行分类,然后针对同类特征序列数据集构建子组合模型。针对新输入的交通流状态数据,分析其与已分类数据的相似度计算组合模型的概率权重,然后通过概率加权融合组合模型预测输出。仿真实验验证了本文模型的有效性与准确性。

     

  • 图  1  基于相似性聚类的交通流概率组合预测模型

    Figure  1.  Combination forecasting model of traffic flow probability based on similarity clustering

    图  2  自适应k-means++聚类流程

    Figure  2.  Adaptive k-means++ clustering process

    图  3  基于在线误差的自适应权重调节流程图

    Figure  3.  Flow chart of adaptive weight adjustment based on online error

    图  4  交通流量数据图

    Figure  4.  Traffic flow data graph

    图  5  不同k值的CHI

    Figure  5.  CHI with different k values

    图  6  PLS预测效果图

    Figure  6.  Prediction results of PLS model

    图  7  预测模型效果对比图

    Figure  7.  Prediction comparison of model effects

    表  1  预测指标对比

    Table  1.   Evalution of prediction models

    ModelRMSEMAEMAPE/%
    PLS-LSTM30.9021.998.98
    PLS-LSTM(without clustering)32.8923.179.35
    ARIMA-BP32.9723.679.51
    LSTM33.5023.929.62
    SVR36.2429.1215.67
    下载: 导出CSV

    表  2  计算时间与精度的关系

    Table  2.   Relationship between calculation time and accuracy

    Epocht/sRMSE
    2030.5631.96
    4042.2931.01
    6050.7530.90
    8061.0730.80
    下载: 导出CSV
  • [1] HUANG W, JIA W, GUO J, et al. Real-time prediction of seasonal heteroscedasticity in vehicular traffic flow series[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(10): 3170-3180.
    [2] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi–passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402. doi: 10.1109/TITS.2013.2262376
    [3] LEE S, LEE Y I, CHO B. Short-term travel speed prediction models in car navigation systems[J]. Journal of Advanced Transportation, 2010, 40(2): 122-139.
    [4] SAFIKHANI A, KAMGA C, MUDIGONDA S, et al. Spatio-temporal modeling of Yellow Taxi Demands in New York City using generalized STAR models[J]. International Journal of Forecasting, 2020, 36(3): 1138-1148. doi: 10.1016/j.ijforecast.2018.10.001
    [5] WANG JIN, SHI QIXIN. Short-term traffic speed forecasting hybrid model based on Chaos-wavelet analysis-support vector Machine theory[J]. Transportation Research: Part C. Emerging Technologies, 2013, 27: 219-232. doi: 10.1016/j.trc.2012.08.004
    [6] WU CHUN-HISIN, HO JAN-MING, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 5(4): 276-281.
    [7] YANG Z, MEI D, YANG Q, et al. Traffic flow prediction model for large-scale road network based on cloud computing[J]. Mathematical Problems in Engineering, 2014(3): 1-8.
    [8] 许岩岩, 翟希, 孔庆杰, 等. 基于分类回归树的交通流短时预测[C]//第七届中国智能交通年会优秀论文集——智能交通技术. 北京: 中国智能交通协会, 2012: 35-36.
    [9] SONG C, LEE H, KANG C, et al. Traffic speed prediction under weekday using convolutional neural networks concepts[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV). USA: IEEE, 2017: 1293-1298, .
    [10] ZHAO Z, CHEN W H, WU X M, et al. LSTM network: A deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. doi: 10.1049/iet-its.2016.0208
    [11] LIU B Y, CHENG J R, CAI K Q, et al. Singular point probability improve LSTM network performance for long-term traffic flow prediction[C]//Proceedings of the National Conference of Theoretical Computer Science. Singapore: Springer, 2017: 328-340.
    [12] 沈国江, 朱芸, 钱晓杰, 等. 短时交通流组合模型预测[J]. 南京理工大学学报(自然科学版), 2014, 38(2): 246-251.
    [13] 李建森, 沈齐, 范馨月. 城市道路短时交通流量预测[J]. 数学的实践与认识, 2019, 49(5): 192-197.
    [14] 钱伟, 车凯, 李冰锋. 基于组合模型的短时交通流量预测[J]. 控制工程, 2019, 26(1): 125-130.
    [15] GUO Y, YANG H, CHEN M, et al. Ensemble prediction-based dynamic robust multi-objective optimization methods[J]. Swarm and Evolutionary Computation, 2019, 48: 156-171. doi: 10.1016/j.swevo.2019.03.015
    [16] YANG L, GUO Y, CHENG J. Manifold distance-based over-sampling technique for class imbalance learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA: AAAI, 2019, 10071-10072.
    [17] ARTHUR D, VASSILVITSKII S. k-Means++: The advantages of careful seeding[C]// Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans, Louisiana, USA: ACM, 2007: 1027-1035.
    [18] DAI G W, MA C X, XU X C. Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU[J]. IEEE Access, 2019, 7: 143025-143035. doi: 10.1109/ACCESS.2019.2941280
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  700
  • HTML全文浏览量:  515
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2022-06-29

目录

    /

    返回文章
    返回