Sharp Bounds on General Sum-Connectivity Index Based on Lexicographic Product
-
摘要: 对于图
$ G $ ,令$ E\left(G\right) $ ,$ {d}_{G}\left(v\right) $ 分别表示$ G $ 的边集和顶点$ v $ 的度。对于边$ e=uv $ ,定义广义和连通度指标$ {\chi }_{\alpha }\left(e\right)={({d}_{G}\left(u\right)+{d}_{G}(v\left)\right)}^{\alpha } $ ,其中$ \alpha $ 为任意实数。在对两个简单的连通图$ G $ 和H做乘积之前,先对其中一个图H进行$ S, R, Q, T $ 4种运算,运算后的图记为$ F\left(H\right) $ (其中$ F\in \{S, R, Q, T\} $ ),再对图$ G $ 和$ F\left(H\right) $ 做字典序乘积,给出了基于字典序乘积下图的广义和连通度的指标上下界,并且这些界都是最好的。Abstract: Give a graph$ G $ , let$ E\left(G\right) $ and$ {d}_{G}\left(v\right) $ represent the set of edges and the degree of the vertex$ v $ , respectively. For an edge$ e=uv $ , the general sum-connectivity index is$ {\chi }_{\alpha }\left(e\right)={({d}_{G}\left(u\right)+{d}_{G}(v\left)\right)}^{\alpha } $ , in which$ \alpha $ is any real number. Before taking the product of two simple connected graphs$ G $ and$ H $ , we first perform four operations of$ {S},{R},{Q},{T}$ on the graph$ H $ , denoted as$ F\left(H\right) $ , in which$ F\in \{S, R, Q, T\} $ , then take the lexicographical product of graphs$ G $ and$ F\left(H\right) $ . The sharp bounds on general sum-connectivity index of graphs for operations based on lexicographic product are given, and these bounds are sharp.-
Key words:
- general sum-connectivity index /
- lexicographic product /
- four operation on graphs /
- F-sum
-
-
[1] RANDIĆ M. On characterization of molecular branching[J]. Journal of the American Chemical Society, 1975, 97(25): 6609-6615. [2] GUTMAN I, TRINAJSTIĆ N. Graph theory and molecular orbitals, total π-electron energy of alternant hydrocarbons[J]. Chemical Physics Letters, 1972, 17(4): 535-538. doi: 10.1016/0009-2614(72)85099-1 [3] DENG H, SARALA D, AYYASWAMY S K, et al. The Zagreb indices of four operations on graphs[J]. Applied Mathematics and Computation, 2016, 275: 422-431. doi: 10.1016/j.amc.2015.11.058 [4] ZHOU B, TRINAJSTIĆ N. On a novel connectivity index[J]. Journal of Mathematical Chemistry, 2009, 46(4): 1252-1270. doi: 10.1007/s10910-008-9515-z [5] ZHOU B, TRINAJSTIĆ N. On general sum-connectivity index[J]. Journal of Mathematical Chemistry, 2010, 47(1): 210-218. doi: 10.1007/s10910-009-9542-4 [6] ONAGH B N. The harmonic index of graphs based on some operations related to the lexicographic product[J]. Mathematical Sciences, 2019, 13(2): 165-174. doi: 10.1007/s40096-019-0287-3 [7] AKHTER S, IMRAN M. The sharp bounds on general sum-connectivity index of four operations on graphs[J]. Journal of Inequalities and Applications, 2016, 1: 241. [8] DU Z, ZHOU B, TRINAJSTIĆ N. Minimum general sum-connectivity index of unicyclic graphs[J]. Journal of Mathematical Chemistry, 2010, 48(3): 697-703. doi: 10.1007/s10910-010-9702-6 [9] TOMESCUA I, KANWAL S. Ordering trees having small general sum-connectivity index[J]. Match Communications in Mathematical and in Computer Chemistry, 2013, 69: 535-548. [10] ELIASI M, TAERI B. Four new sums of graphs and their Wiener indices[J]. Discrete Applied Mathematics, 2009, 157(4): 794-803. doi: 10.1016/j.dam.2008.07.001 [11] IMRICH W, KLAVZAR S. Product Graphs: Structure and Recognition[M]. New York, USA: Wiley-Interscience, 2000. [12] SARALA D, DENG H, AYYASWAMY S K, et al. The Zagreb indices of graphs based on four new operations related to the lexicographic product[J]. Applied Mathematics and Computation, 2017, 309: 156-169. doi: 10.1016/j.amc.2017.04.002 -