高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于字典序乘积下广义和连通度指标的上下界

李志豪 朱焱

李志豪, 朱焱. 基于字典序乘积下广义和连通度指标的上下界[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210204001
引用本文: 李志豪, 朱焱. 基于字典序乘积下广义和连通度指标的上下界[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210204001
LI Zhihao, ZHU Yan. The Sharp Bounds On General Sum-connectivity Index Based On Lexicographic Product[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210204001
Citation: LI Zhihao, ZHU Yan. The Sharp Bounds On General Sum-connectivity Index Based On Lexicographic Product[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210204001

基于字典序乘积下广义和连通度指标的上下界

doi: 10.14135/j.cnki.1006-3080.20210204001
基金项目: 国家自然科学基金(11671135)
详细信息
    作者简介:

    李志豪(1996-),男,河南省驻马店人,硕士生,研究方向为图论,E-mail:15216879521@163.com

    通讯作者:

    朱焱(1984—),E-mail:zhuygraph@ecust.edu.cn

  • 中图分类号: O157

The Sharp Bounds On General Sum-connectivity Index Based On Lexicographic Product

  • 摘要: 对于图$ G $,令$ E\left(G\right) $$ {d}_{G}\left(v\right) $分别表示$ G $的边集和顶点$ v $的度。对于边$ e=uv $,定义广义和连通度指标$ {\chi }_{\alpha }\left(e\right)={({d}_{G}\left(u\right)+{d}_{G}(v\left)\right)}^{\alpha } $,其中$ \alpha $为任意实数。在对两个简单的连通图$ G $$ H $做乘积之前,先对其中一个图$ H $进行$ S, R, Q, T $四种运算,运算后的图记为$ F\left(H\right) $(其中$ F\in \{S, R, Q, T\} $),再对图$ G $$ F\left(H\right) $做字典序乘积,给出了基于字典序乘积下图的广义和连通度指标上下界,并且这些界都是最好的。

     

  • 图  1  $ F\left({P}_{6}\right), F\in \{S, R, Q, T\} $

    Figure  1.  The four operations of graph $ G $

    图  2  $ {{P}_{3}\left[{P}_{3}\right]}_{F} $$ F\in \{S, R, Q, T\} $

    Figure  2.  $ {{P}_{3}\left[{P}_{3}\right]}_{F},F\in \{S,R,Q,T\} $

  • [1] RANDIĆ M. On characterization of molecular branching[J]. Journal of the American Chemical Society, 1975: 6609-6615.
    [2] GUTMAN I, TRINAJSTIĆ N. Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons[J]. Chemical Physics Letters, 1972, 17(4): 535-538. doi: 10.1016/0009-2614(72)85099-1
    [3] DENG H, SARALA D, AYYASWAMY S K, et al. The Zagreb indices of four operations on graphs[J]. Applied Mathematics and Computation, 2016, 275: 422-431. doi: 10.1016/j.amc.2015.11.058
    [4] ZHOU B, TRINAJSTIĆ N. On a novel connectivity index[J]. Journal of Mathematical Chemistry, 2009, 46(4): 1252-1270. doi: 10.1007/s10910-008-9515-z
    [5] ZHOU B, TRINAJSTIĆ N. On general sum-connectivity index[J]. Journal of Mathematical Chemistry, 2010, 47(1): 210-218. doi: 10.1007/s10910-009-9542-4
    [6] ELIASI M, TAERI B. Four new sums of graphs and their Wiener indices[J]. Discrete Applied Mathematics, 2009, 157(4): 794-803. doi: 10.1016/j.dam.2008.07.001
    [7] IMRICH W, KLAVZAR S. Product Graphs: Structure And Recognition[M]. New York, USA: John Wiley, Sons, 2000.
    [8] SARALA D, DENG H, AYYASWAMY S K, et al. The Zagreb indices of graphs based on four new operations related to the lexicographic product[J]. Applied Mathematics and Computation, 2017, 309: 156-169. doi: 10.1016/j.amc.2017.04.002
    [9] ONAGH B N. The harmonic index of graphs based on some operations related to the lexicographic product[J]. Mathematical Sciences, 2019, 13(2): 165-174. doi: 10.1007/s40096-019-0287-3
    [10] AKHTER S, IMRAN M. The sharp bounds on general sum-connectivity index of four operations on graphs[J]. Journal of Inequalities and Applications, 2016, 1: 241.
    [11] DU Z, ZHOU B, TRINAJSTIĆ N. Minimum general sum-connectivity index of unicyclic graphs[J]. Journal of Mathematical Chemistry, 2010, 48(3): 697-703. doi: 10.1007/s10910-010-9702-6
    [12] TOMESCUA I, KANWAL S. Ordering trees having small general sum-connectivity index[J]. Match Communications in Mathematical and in Computer Chemistry, 2013, 69: 535-548.
  • 加载中
图(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  36
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 网络出版日期:  2021-06-25

目录

    /

    返回文章
    返回