Design of Delayed PUF Circuit Based on Dynamic Subthreshold
-
摘要: 物理不可克隆函数(Physical Unclonable Function, PUF)电路能有效抵御侵入式物理攻击,但随着芯片集成度以及物联网技术的不断提高,模型攻击、有限能耗预算等不仅严重威胁PUF电路的安全性,而且限制PUF电路的能效。通过对PUF电路以及亚阈值逻辑的研究,提出了一种基于动态亚阈值的延迟型PUF电路设计方案。该方案首先利用亚阈值压控电路构成输出函数非线性部分;然后利用电荷分享效应改变输出电压初始值,形成随激励信号变化的非线性输出函数;最后通过动态亚阈值判决器输出PUF响应。电路采用TSMC 65nm CMOS工艺设计,并通过HSPICE验证,能耗为0.238 pJ/bit,与同类电路相比能耗降低了20.67%,并具有良好的抗模型攻击特性。Abstract: Physical unclonable function (PUF) circuits can effectively resist intrusive physical attacks. However, with the continuous improvement of chip integration and IoT (Internet of Things) technology, model attacks and limited energy budgets not only seriously threaten the security of PUF circuits, but also limit the energy efficiency of PUF circuits. By the study of PUF circuit and subthreshold logic, this paper proposes a design scheme of delay PUF circuit based on dynamic subthreshold. Firstly, a sub-threshold voltage control circuit is utilized to form the nonlinear part of the output function. And then, the initial value of the output voltage is modified by charge sharing effect to form a nonlinear output function that varies with the excitation signal. Finally, the PUF response is outputted by a dynamic subthreshold arbiter. The proposed PUF circuit is designed in TSMC 65 nm CMOS technology and verified by HSPICE tool. Experimental results show that the circuit can effectively resist model attacks and has an energy consumption of 0.23pJ/bit which is 20.67% lower than similar circuits.
-
Key words:
- physical unclonable function /
- dynamic subthreshold delay /
- model attack /
- low power
-
表 1 电路性能比较结果
Table 1. Circuit performance comparison results
-
[1] CAO Y, ZHANG L, CHANG C, et al. A low-power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143-1147. doi: 10.1109/TCAD.2015.2424955 [2] ZHAO X, GAN P, ZHAO Q, et al. A 124 fJ/bit cascade current mirror array based PUF with 1.50% native unstable bit ratio[J]. IEEE Transactions on Circuits and Systems: I. Regular Papers, 2019, 66(9): 3494-3503. doi: 10.1109/TCSI.2019.2927758 [3] WANG S, CHEN Y, LI K. Adversarial attack against modeling attack on PUFs[C]// 2019 56th ACM/IEEE Design Automation Conference (DAC). USA: IEEE, 2019: 1-6. [4] SHI J, LU Y, ZHANG J. Approximation attacks on strong PUFs[J]. IEEE transactions on computer-aided design of integrated circuits and systems, 2020, 39(10): 2138-2151. doi: 10.1109/TCAD.2019.2962115 [5] TAO S, DUBROVA E. Ultra-energy-efficient temperature-stable physical unclonable function in 65 nm CMOS[J]. Electronics Letters, 2016, 52(10): 805-806. doi: 10.1049/el.2016.0292 [6] ZHUANG H, XI X, SUN N, et al. A strong subthreshold current array PUF resilient to machine learning attacks[J]. IEEE Transactions on Circuits and Systems: I. Regular Papers, 2020, 67(1): 135-144. doi: 10.1109/TCSI.2019.2945247 [7] XI X, ZHUANG H, SUN N, et al. Strong subthreshold current array PUF with 265 challenge-response pairs resilient to machine learning attacks in 130nm CMOS[C]//Symposium on VLSI Circuits. Japan: IEEE, 2017: 268-269. [8] LIN L, SRIVATHSA S, KRISHNAPPA D, et al. Design and validation of arbiter-based PUFs for sub-45 nm low-power security applications[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(4): 1394-1403. doi: 10.1109/TIFS.2012.2195174 [9] ZALIVAKA S, IVANIUK A, CHANG C. Reliable and modeling attack resistant authentication of arbiter PUF in FPGA implementation with trinary quadruple response[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(4): 1109-1123. doi: 10.1109/TIFS.2018.2870835 [10] SANTIKELLUR P, CHAKRABORTY R. A computationally efficient tensor regression network based modeling attack on XOR arbiter PUF and its variants[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1197-1206. [11] LI J, SEOK M. Ultra-compact and robust physically unclonable function based on voltage compensated proportional-to-absolute- temperature voltage generators[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 2192-2202. doi: 10.1109/JSSC.2016.2586498 [12] SU Y, HOLLEMAN J, OTIS B. A digital 1.6 pJ/bit chip identification circuit using process variations[J]. IEEE Journal of Solid-State Circuits, 2008, 43(1): 69-77. doi: 10.1109/JSSC.2007.910961 [13] VENKATESH A, VENKATASUBRAMANIYAN A, XI X, et al. 0.3 pJ/bit machine learning resistant strong PUF using subthreshold voltage divider array[J]. IEEE Transactions on Circuits and Systems: II. Express Briefs, 2020, 57(8): 1394-1398. -