高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

CuFe (100)及(110)上合成气制低碳醇碳链增长机理研究

王康明 张海涛 李涛

王康明, 张海涛, 李涛. CuFe (100)及(110)上合成气制低碳醇碳链增长机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210127003
引用本文: 王康明, 张海涛, 李涛. CuFe (100)及(110)上合成气制低碳醇碳链增长机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210127003
WANG Kangming, ZHANG Haitao, LI Tao. Carbon Chain Growth Mechanism of Higher Alcohols Formation from Syngas on CuFe (100) and (110)[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210127003
Citation: WANG Kangming, ZHANG Haitao, LI Tao. Carbon Chain Growth Mechanism of Higher Alcohols Formation from Syngas on CuFe (100) and (110)[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210127003

CuFe (100)及(110)上合成气制低碳醇碳链增长机理研究

doi: 10.14135/j.cnki.1006-3080.20210127003
详细信息
    作者简介:

    王康明(1996—),男,安徽淮南人,硕士生,主要研究方向为催化反应工程。E-mail:1561409713@qq.com

    通讯作者:

    李 涛,E-mail:tli@ecust.edu.cn

  • 中图分类号: TQ032.4

Carbon Chain Growth Mechanism of Higher Alcohols Formation from Syngas on CuFe (100) and (110)

  • 摘要: CuFe混合催化剂是一种重要的合成气制低碳醇用催化剂。为深入了解合成气制低碳醇的反应机理,从量子尺度研究了其两个主要表面(100)及(110)上的碳链增长机理。计算发现Cu在Fe(100)及(110)面上倾向于单层聚集分布,CuFe(100)面上CO活化机理为H辅助CO生成CHO,随后逐步加氢生成CH2O和CH3O,CH3O更倾向于生成CH3OH,其碳链增长方式为CHO插入;CuFe(110)面上CO活化机理与CuFe(100)相同,H辅助CO加氢生成的CHO不断加氢依次生成CH2O和CH3O,但CH3O更倾向于生成CH3,并进一步与CO耦合完成碳链的增长。

     

  • 图  1  (a) Fe(100)及(b) Fe(110)表面Cu原子排布

    Figure  1.  Distribution of Cu atom on (a) Fe (100) and (b) Fe (110) surfaces

    图  2  (a) CuFe(100)与(b) CuFe(110)表面模型及其吸附位

    Figure  2.  Surface models of (a) CuFe (100) and (b) CuFe (110) and their adsorption sites

    图  3  (a)CuFe(100)及(b)CuFe(110)上所有物种最稳定吸附构型

    Figure  3.  Most stable adsorption configuration of species on (a) CuFe (100) and (b) CuFe (110) surfaces

    图  4  (a) CuFe (100)与(b) CuFe (110)面上CO活化解离过程涉及反应的势能图与过渡态构型

    Figure  4.  Potential energy diagram and transition state configuration of the reaction are involved in the CO dissociation process on (a) CuFe (100) and (b) CuFe (110) surfaces

    图  5  (a)CuFe (110)及(b)CuFe(110)面上CHx, CHxO, CHxOH物种形成过程涉及反应的势能图与过渡态构型

    Figure  5.  Potential energy diagram and transition state configuration of the reaction involved in CHx, CHxO, CHxOH speciation on (a) CuFe (100) and (b) CuFe (110) surfaces

    图  6  (a) CuFe (100)与(b) CuFe (110)面上碳链增长过程涉及反应的势能图与过渡态构型

    Figure  6.  Potential energy diagram and transition state configuration of the reaction involved in the carbon chain growth process on (a) CuFe (100) and (b) CuFe (110) surfaces

    表  1  不同Cu原子排布的模型表面能

    Table  1.   Surface energy of model with different Cu atom distribution methods

    (100)Esurf/(J·m−2(110)Esurf/(J·m−2
    Cu06.32Cu07.60
    Cu45.91Cu37.14
    Cu4(2)5.98Cu3(2)7.39
    Cu85.61Cu66.76
    Cu8(2)5.66Cu6(2)6.95
    Cu125.18Cu96.36
    Cu12(2)5.32Cu9(2)6.41
    Cu164.98Cu125.94
    下载: 导出CSV

    表  2  CuFe(100)及(110)上所有物种的最稳定吸附位及吸附能

    Table  2.   Most stable adsorption sites and adsorption energies of species on CuFe (100) and CuFe (110) surfaces

    SpeciesCuFe (100)CuFe (110)
    Adsorption siteEads/eVBonding atomAdsorption siteEads/eVBonding atom
    CHollow−7.50CLB−9.07C
    OHollow−6.10OLB−6.23O
    HHollow−2.88HTF−5.28H
    COHollow−1.61CTF−2.52C
    CHOb-h-b−2.28C;OTF-LB-TF−3.93C;O
    CH2OHollow−3.61C;OSB-TF-SB−4.67C; O
    CH3OHollow−2.37OLB−4.37O
    COHHollow−3.82CLB−5.09C
    CHOHBridge−3.10CLB-TF−4.06C
    CH2OHt-b-t−2.41C;OT-SB-T−2.72C;O
    CH3OHt-h−1.24OT-TF−2.66C
    CHHollow−6.58CLB−6.78C
    CH2Hollow−4.50CLB−5.23C
    CH3Bridge−2.20CTF−3.72C
    CH4Top−0.38-T--
    C2H6b-t-b−0.13-TF-T-TF--
    CH3COt-b-t−3.85C;OT-SB−3.48C;O
    CH3CHOt-b−3.58OT-SB−4.16O
    下载: 导出CSV
  • [1] XIAO K, BAO Z H, QI X Z, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chinese Journal of Catalysis, 2013, 34(1): 116-129. doi: 10.1016/S1872-2067(11)60496-8
    [2] CHENG J, HU P, ELLIS P, et al. A first-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis[J]. Journal of Physical Chemistry C, 2008, 112(25): 9464-9473. doi: 10.1021/jp802242t
    [3] WANG J B, ZHANG X R, SUN Q, et al. Chain growth mechanism on bimetallic surfaces for higher alcohol synthesis from syngas[J]. Catalysis Communications, 2015, 61(61): 57-61.
    [4] NING X, AN Z, HE J. Remarkably efficient CoGa catalyst with uniformly dispersed and trapped structure for ethanol and higher alcohol synthesis from syngas[J]. Journal of Catalysis, 2016, 340: 236-247. doi: 10.1016/j.jcat.2016.05.014
    [5] 士丽敏, 储伟, 刘增超. 合成气制低碳醇用催化剂的研究进展[J]. 化工进展, 2011, 30(1): 162-166.
    [6] 苏艳敏, 郑化安, 付东升, 等. Cu-Fe基催化剂在煤基合成气制低碳混合醇中的应用[J]. 洁净煤技术, 2013, 19(5): 68-73.
    [7] SONG N, CAO J B, CHEN B X, et al. CO adsorption and activation of η-Fe2C Fischer–Tropsch catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21296-21303.
    [8] WANG B J, LIANG D L, ZHANG R G, et al. Crystal facet dependence for the selectivity of C2 species over Co2C catalysts in the Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2018, 122(51): 29249-29258. doi: 10.1021/acs.jpcc.8b08783
    [9] SUN X Y, YU Y Z, ZHANG M H. Insight into the effect of promoter Co on C2 oxygenate formation from syngas on CoCu(100) and Cu(100): A comparative DFT study[J]. Applied Surface Science, 2018, 434: 28-39. doi: 10.1016/j.apsusc.2017.10.164
    [10] WANG W, WANG Y, WANG G C. Ethanol synthesis from syngas over Cu(Pd)-doped Fe(100): A systematic theoretical investigation[J]. Physical Chemistry Chem-ical Physics, 2018, 20(4): 2492-2507. doi: 10.1039/C7CP06693G
    [11] ZHAO X H, LI Y W, WANG J G, et al. CO adsorption, CO dissociation, and C-C coupling on Cu monolayer-covered Fe(100)[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 956-960. doi: 10.1016/S1872-5813(12)60004-8
    [12] TIAN X X, WANG T, YANG Y, et al. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation[J]. Physical Che-mistry Chemical Physics, 2014, 16(48): 26997-27011. doi: 10.1039/C4CP04012K
    [13] ZHAN Y H, LI S G, SUN Y H. CO dissociation mechanism on Cu-doped Fe(100) surfaces[J]. Journal of Physical Chemistry C, 2017, 117(47): 24920-24931.
    [14] ZHAN J Y, ZHAN F Q, XU S Y, et al. DFT studies on doping effect of Al12X: adsorption and dissociation of H2O on Al12X clusters[J]. Journal of Physical Chemistry A, 2013, 117(10): 2213-2222. doi: 10.1021/jp309422p
    [15] LI J R, ZHANG R G, WANG B J. Influence of the hydroxylation of γ-Al2O3 surfaces on the stability and growth of Cu for Cu/γ-Al2O3 catalyst: A DFT study[J]. Applied Surface Science, 2013, 270: 728-736. doi: 10.1016/j.apsusc.2013.01.139
    [16] CHANG C R, WANG Y G, LI J. Theoretical invest-igations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway[J]. Nano Research, 2011, 4(1): 131-142. doi: 10.1007/s12274-010-0083-8
    [17] JIANG Q G, AO Z M, CHU D W, et al. Reversible transition of graphene from hydrophobic to hydrophilic in the presence of an electric field[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19321-19326. doi: 10.1021/jp3050466
    [18] AO Z M, PEETERS F M. Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene[J]. The Journal of Physical Chemistry C, 2010, 114(34): 14503-14509. doi: 10.1021/jp103835k
    [19] ZHANG R G, WANG G R, WANG B J. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based cata-lyst[J]. Journal of Catalysis, 2013, 305: 238-255. doi: 10.1016/j.jcat.2013.05.028
    [20] SUN Q, LI Z, SEARLES D J, et al. Charge-controlled switchable CO2 capture on boron nitride nanomat-erials[J]. Journal of the American Chemical Society, 2013, 135(22): 8246-8253. doi: 10.1021/ja400243r
    [21] YANG Y X, WHITE M G, LIU P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces[J]. Journal of Physical Chem-istry C, 2012, 116(1): 248-256. doi: 10.1021/jp208448c
    [22] LO J M H, Tom ZIEGLER T. A first-principle study of chain propagation steps in the Fischer-Tropsch synthesis on Fe(100)[J]. The Journal of Physical Chemistry C, 2008, 112(35): 13681-13691. doi: 10.1021/jp802042s
    [23] YAMAGISHI S, FUJIMOTO T, YASUJI I Y, et al. Studies of CO adsorption on Pt(100), Pt(410) and Pt(110) surfaces using density functional theory[J]. Journal of Physical Chemistry B, 2005, 109(18): 8899-8908. doi: 10.1021/jp050722i
    [24] WANG W, WANG Y, WANG G C. CO dissociation mechanism on Pd-doped Fe(100): Comparison with Cu/Fe(100)[J]. The Journal of Physical Chemistry C, 2017, 121(12): 6820-6834. doi: 10.1021/acs.jpcc.7b00903
    [25] SONG N, CHEN B X, DUAN X Z, et al. Adsorption and activation of CO on η-Fe2C(011) surface of Fischer-Toropsch synthesis catalyst[J]. Journal of Shanxi Nor-mal University(Natural Science Edition), 2019, 47(1): 15-21.
    [26] MOHAMMAD R E, MANUEL P J, HANS N. Direct versus hydrogen-assisted CO dissociation on the Fe(100) surface: A DFT study[J]. Chemphyschem, 2012, 13(1): 89-91. doi: 10.1002/cphc.201100759
    [27] ZHENG H Y, ZHANG R G, LI Z, et al. Insight into the mechanism and possibility of ethanol formation from syngas on Cu(100) surface[J]. Molecular Catalysis, 2015, 404: 115-130.
    [28] 林维明, 甘世凡, 黄传荣, 等. 在铜铁系催化剂上合成低碳醇的研究[J]. 天然气化工: C1化学与化工, 1987, 1: 14-19.
    [29] REN B H, DONG X Q, YU Y Z, et al. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces[J]. Applied Surface Science, 2017, 412(1): 374-384.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  110
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 网络出版日期:  2021-04-12

目录

    /

    返回文章
    返回