高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

新型肌肉高效亲和AAV血清型的开发

陈颖 吴佳梅 凌菲香 曾步兵 郑静 吴侠 赵锴 肖啸

陈颖, 吴佳梅, 凌菲香, 曾步兵, 郑静, 吴侠, 赵锴, 肖啸. 新型肌肉高效亲和AAV血清型的开发[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210127001
引用本文: 陈颖, 吴佳梅, 凌菲香, 曾步兵, 郑静, 吴侠, 赵锴, 肖啸. 新型肌肉高效亲和AAV血清型的开发[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210127001
Chen Ying, Wu Jiamei, Ling Feixiang, Zeng Bubing, Zheng Jing, Wu Xia, Zhao Kai, Xiao Xiao. Generation of a Novel Muscle-Tropic AAV Serotype[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210127001
Citation: Chen Ying, Wu Jiamei, Ling Feixiang, Zeng Bubing, Zheng Jing, Wu Xia, Zhao Kai, Xiao Xiao. Generation of a Novel Muscle-Tropic AAV Serotype[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210127001

新型肌肉高效亲和AAV血清型的开发

doi: 10.14135/j.cnki.1006-3080.20210127001
基金项目: 中央高校基本科研业务费专项资金赞助
详细信息
    作者简介:

    陈颖(1995-),女,江苏南通人,硕士生,研究方向为基因治疗的新药研发。Email:cysj950925@163.com

    通讯作者:

    肖啸,E-mail:xiaoxiao@ecust.edu.cn

  • 中图分类号: Q782

Generation of a Novel Muscle-Tropic AAV Serotype

  • 摘要: 通过在AAV5衣壳的N573后插入一个寡肽PGPSPAD生成了一种改良的AAV血清型,称为AAVc1,在体外和体内均表现出比AAV5、AAV8和AAV9更好的肌肉感染性;恒河猴血清中针对AAVc1的中和抗体(Neutralizing antibodies,Nabs)滴度低于AAV9,这表明针对AAVc1的中和抗体的免疫应答低于AAV9。结果表明,新型血清型AAVc1应用到AAV基因治疗中优于野生型AAV血清型。

     

  • 图  1  从C2C12成肌细胞中筛选AAV5突变衣壳

    Figure  1.  Screen of AAV5 mutant capsids from C2C12 myoblast cell

    图  2  AAVc1在C2C12成肌细胞中的强大转导效率

    Figure  2.  Robust transduction efficiency of AAVc1 in C2C12 myoblast cell

    图  3  AAVc1在小鼠肌肉中的强大转导效率

    Figure  3.  Robust transduction efficiency of AAVc1 in mouse muscle. (a) Representative images of Tibial anterior (TA), soleus (SO) and gastrocnemius (GA) muscles infected with AAV carrying GFP gene. (b)-(c) Quantification of transduction efficiency, GFP positive muscle ratio (b) and fluorescence intensity (c)

    表  1  AAV血清型效价的定量

    Table  1.   Quantification of AAV titers

    SerotypeTiter/(vg·mL−1)
    AAV5AAV8AAV9AAVc1
    qPCR1.09×10121.54×10128.95×10111.28×1012
    Silver stain1.65×10123.25×10122.31×10121.93×1012
    Full/empty66.06%47.38%38.74%66.32%
    下载: 导出CSV

    表  2  猴子血清中不同AAV血清型的中和抗体检测

    Table  2.   Detection of neutralizing antibodies of different AAV serotypes in monkey serum

    Monkey IDAnti-AAV9Anti-AAVc1
    115591∶321∶2
    130611∶81∶1
    130731∶161∶2
    131751∶161∶8
    133431∶2<1∶1
    136531∶81∶2
    137251∶321∶8
    800431∶11∶1
    1000391∶161∶1
    12347A
    1∶1<1∶1
    下载: 导出CSV
  • [1] LI C, SAMULSKI R J. Engineering adeno-associated virus vectors for gene therapy[J]. Nature reviews Genetics, 2020, 21(4): 255-272. doi: 10.1038/s41576-019-0205-4
    [2] NALDINI L. Ex vivo gene transfer and correction for cell-based therapies[J]. Nature reviews Genetics, 2011, 12(5): 301-315. doi: 10.1038/nrg2985
    [3] MINGOZZI F, HIGH K A. Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges[J]. Nature reviews Genetics, 2011, 12(5): 341-355. doi: 10.1038/nrg2988
    [4] ATCHISON R W, CASTO B C, HAMMON W M. Adenovirus-associated defective virus particles[J]. Science, 1965, 149(3685): 754-756. doi: 10.1126/science.149.3685.754
    [5] HIRSCH M L, WOLF S J, SAMULSKI R J. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors[J]. Methods in molecular biology, 2016, 1382: 21-39.
    [6] SAMULSKI R J, MUZYCZKA N. AAV-mediated gene therapy for research and therapeutic purposes[J]. Annual review of virology, 2014, 1(1): 427-451. doi: 10.1146/annurev-virology-031413-085355
    [7] CARTER P J, SAMULSKI R J. Adeno-associated viral vectors as gene delivery vehicles[J]. International journal of molecular medicine, 2000, 6(1): 17-27.
    [8] COLELLA P, RONZITTI G, MINGOZZI F. Emerging issues in AAV-mediatedin vivo gene therapy[J]. Molecular therapy Methods & clinical development, 2018: 8(87-104.
    [9] LI C, BOWLES D E, VAN DYKE T, et al. Adeno-associated virus vectors: Potential applications for cancer gene therapy[J]. Cancer gene therapy, 2005, 12(12): 913-925. doi: 10.1038/sj.cgt.7700876
    [10] STILWELL J L, SAMULSKI R J. Adeno-associated virus vectors for therapeutic gene transfer[J]. BioTechniques, 2003, 34(1): 148-150, 152, 154 passim. doi: 10.2144/03341dd01
    [11] CALCEDO R, MORIZONO H, WANG L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents[J]. Clinical and vaccine immunology: CVI, 2011, 18(9): 1586-1588. doi: 10.1128/CVI.05107-11
    [12] CHEN Y H, CHANG M, DAVIDSON B L. Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy[J]. Nature medicine, 2009, 15(10): 1215-1218. doi: 10.1038/nm.2025
    [13] PAULK N K, PEKRUN K, ZHU E, et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity[J]. Molecular therapy: The Journal of the American Society of Gene Therapy, 2018, 26(1): 289-303. doi: 10.1016/j.ymthe.2017.09.021
    [14] MAHESHRI N, KOERBER J T, KASPAR B K, et al. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors[J]. Nature biotechnology, 2006, 24(2): 198-204. doi: 10.1038/nbt1182
    [15] KOERBER J T, JANG J H, SCHAFFER D V. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny[J]. Molecular therapy: The Journal of the American Society of Gene Therapy, 2008, 16(10): 1703-1709. doi: 10.1038/mt.2008.167
    [16] KOTTERMAN M A, SCHAFFER D V. Engineering adeno-associated viruses for clinical gene therapy[J]. Nature reviews Genetics, 2014, 15(7): 445-451. doi: 10.1038/nrg3742
    [17] CHOUDHURY S R, FITZPATRICK Z, HARRIS A F, et al. In Vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy[J]. Molecular therapy: the journal of the American Society of Gene Therapy, 2016, 24(7): 1247-1257. doi: 10.1038/mt.2016.84
    [18] LI W, ZHANG L, JOHNSON J S, et al. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium[J]. Molecular therapy: The Journal of the American Society of Gene Therapy, 2009, 17(12): 2067-2077. doi: 10.1038/mt.2009.155
    [19] YANG L, JIANG J, DROUIN L M, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(10): 3946-3951. doi: 10.1073/pnas.0813207106
    [20] SANTIAGO-ORTIZ J, OJALA D S, WESTESSON O, et al. AAV ancestral reconstruction library enables selection of broadly infectious viral variants[J]. Gene therapy, 2015, 22(12): 934-946. doi: 10.1038/gt.2015.74
    [21] ZINN E, PACOURET S, KHAYCHUK V, et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector[J]. Cell reports, 2015, 12(6): 1056-1068. doi: 10.1016/j.celrep.2015.07.019
    [22] MARSIC D, GOVINDASAMY L, CURRLIN S, et al. Vector design tour de force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants[J]. Molecular therapy: the journal of the American Society of Gene Therapy, 2014, 22(11): 1900-1909. doi: 10.1038/mt.2014.139
    [23] PERABO L, BUNING H, KOFLER D M, et al. In vitro selection of viral vectors with modified tropism: The adeno-associated virus display[J]. Molecular therapy: The Journal of the American Society of Gene Therapy, 2003, 8(1): 151-157. doi: 10.1016/S1525-0016(03)00123-0
    [24] MULLER O J, KAUL F, WEITZMAN M D, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors[J]. Nature biotechnology, 2003, 21(9): 1040-1046. doi: 10.1038/nbt856
    [25] ZOLOTUKHIN S, BYRNE B J, MASON E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield[J]. Gene therapy, 1999, 6(6): 973-985. doi: 10.1038/sj.gt.3300938
    [26] SUN J, HUA B, CHEN X, et al. Gene delivery of activated factor VII using alternative adeno-associated virus serotype improves hemostasis in hemophiliac mice with FVIII inhibitors and adeno-associated virus neutralizing antibodies[J]. Human gene therapy, 2017, 28(8): 654-666. doi: 10.1089/hum.2017.016
    [27] FRONTERA W R, OCHALA J. Skeletal muscle: A brief review of structure and function[J]. Calcified tissue international, 2015, 96(3): 183-195. doi: 10.1007/s00223-014-9915-y
    [28] KATTENHORN L M, TIPPER C H, STOICA L, et al. Adeno-associated virus gene therapy for liver disease[J]. Human gene therapy, 2016, 27(12): 947-961. doi: 10.1089/hum.2016.160
    [29] DEVERMAN B E, RAVINA B M, BANKIEWICZ K S, et al. Gene therapy for neurological disorders: Progress and prospects[J]. Nature reviews Drug discovery, 2018, 17(9): 641-659. doi: 10.1038/nrd.2018.110
    [30] MENDELL J R, AL-ZAIDY S, SHELL R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy[J]. The New England journal of medicine, 2017, 377(18): 1713-1722. doi: 10.1056/NEJMoa1706198
    [31] FELSENTHAL N, ZELZER E. Mechanical regulation of musculoskeletal system development[J]. Development, 2017, 144(23): 4271-4283. doi: 10.1242/dev.151266
    [32] SANES J R, LICHTMAN J W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus[J]. Nature reviews Neuroscience, 2001, 2(11): 791-805. doi: 10.1038/35097557
    [33] MOUSE GENOME SEQUENCING C, WATERSTON R H, LINDBLAD-TOH K, et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520-562. doi: 10.1038/nature01262
    [34] FU H, MEADOWS A S, PINEDA R J, et al. Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: Perspective for AAV-mediated gene therapy[J]. Human gene therapy Clinical development, 2017, 28(4): 187-196. doi: 10.1089/humc.2017.109
    [35] BOUTIN S, MONTEILHET V, VERON P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors[J]. Human gene therapy, 2010, 21(6): 704-712. doi: 10.1089/hum.2009.182
    [36] LIU Q, HUANG W, ZHANG H, et al. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors[J]. Gene therapy, 2014, 21(8): 732-738. doi: 10.1038/gt.2014.47
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  41
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-07-01

目录

    /

    返回文章
    返回