高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

一种可适应运动声源的分布式汽车鸣笛声实时定位系统

肖坛 郑力国 凌小峰 张雪芹

肖坛, 郑力国, 凌小峰, 张雪芹. 一种可适应运动声源的分布式汽车鸣笛声实时定位系统[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210110002
引用本文: 肖坛, 郑力国, 凌小峰, 张雪芹. 一种可适应运动声源的分布式汽车鸣笛声实时定位系统[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210110002
XIAO Tan, ZHENG Liguo, LING Xiaofeng, ZHANG Xueqin. A Distributed Real-Time Location System for Automobile Whistle Adaptive to Moving Sound Source[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210110002
Citation: XIAO Tan, ZHENG Liguo, LING Xiaofeng, ZHANG Xueqin. A Distributed Real-Time Location System for Automobile Whistle Adaptive to Moving Sound Source[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210110002

一种可适应运动声源的分布式汽车鸣笛声实时定位系统

doi: 10.14135/j.cnki.1006-3080.20210110002
详细信息
    作者简介:

    肖坛:肖 坛(1995—),男,安徽阜阳人,硕士生,主要研究方向为声源定位。E-mail:x_tan04@163.com

    通讯作者:

    凌小峰,E-mail:xfling@ecust.edu.cn

  • 中图分类号: TP391

A Distributed Real-Time Location System for Automobile Whistle Adaptive to Moving Sound Source

  • 摘要: 针对违章鸣笛车辆的定位问题,提出了一种基于分布式传声器阵列的运动声源快速定位系统。采用GNSS时钟实现传声器间的时间同步,并将同步采集的声音信息传送到云端数据库,应用云计算技术实现声源定位算法。相比于集中式传声器阵列,该系统可大幅降低传声器数量和运算资源,具有成本经济、部署灵活的优点。采用基于到达时间差-到达频率的快速定位算法,充分利用多普勒效应导致的分布式传声器之间到达频率差异信息来克服到达时间差法难以适应运动声源的瓶颈,避免了计算复杂、运算量大的消除多普勒效应过程,具有运算复杂度低、且能适应高速运动声源的优点。系统仿真和现场实验结果均表明该系统能够实现对高速运动声源的快速精确定位,可较好地适用于汽车鸣笛声定位场景。

     

  • 图  1  定位系统设计

    Figure  1.  Design of positioning system

    图  2  声源测量时空模型

    Figure  2.  Spatiotemporal model of sound source measurement

    图  3  广义互相关算法流程图

    Figure  3.  Flowchart of generalized cross correlation algorithm

    图  4  TDOA-FOA快速定位算法流程图

    Figure  4.  Flowchart of fast location algorithm based on TDOA-FOA

    图  5  定位算法仿真结果比较

    Figure  5.  Comparison of simulation results of localization algorithms

    图  6  鸣笛声的时频特性

    Figure  6.  Car whistle traits in time and frequency domain

    图  7  实验场景

    Figure  7.  Experimental scene

    图  8  手机位置

    Figure  8.  Location of mobile phones

    表  1  传声器数量对定位精度的影响

    Table  1.   Influence of microphone numbers on positioning accuracy

    Number of microphoneStatic error /mMotion error /m
    30.4792.463
    40.4280.601
    50.4150.589
    60.3970.576
    下载: 导出CSV

    表  2  网格大小对定位精度和计算耗时的影响

    Table  2.   Influence of grid size on positioning accuracy and computing time

    Grid size/m2Location error/mComputing time/ms
    0.2×0.20.3242281
    0.5×0.50.416048
    1.0×1.00.749613
    下载: 导出CSV

    表  3  实验结果

    Table  3.   Experimental results

    υ/ (km·h−1)TDOA-FOAFMTDOA
    Location
    error /m
    Calculation
    time /ms
    Location
    error /m
    Calculation
    time /s
    00.765nullnull
    101.9681.140.7
    301.7681.242.6
    501.2721.543.5
    700.8691.742.8
    下载: 导出CSV
  • [1] LIU J P, ZHANG Y W, LIU Y. Recognition and localization of car whistles using the microphone array[J]. Journal of Xidian University, 2012, 39(1): 163-167.
    [2] YU L, ANTONI J, WU H J, et al. Fast iteration algorithms for implementing the beamforming of non-synchronous measurements[J]. Mechanical Systems and Signal Processing, 2019, 134: 106309.
    [3] 陶文俊, 郑明辉. 基于等效源法的近场声全息的噪声源识别与定位研究[J]. 计算机与数字工程, 2019, 47(7): 1672-1677. doi: 10.3969/j.issn.1672-9722.2019.07.023
    [4] KRALJEVIC L, RUSSO M, STELLA M, et al. Free-field TDOA-AOA sound source localization using three soundfield microphones[J]. IEEE Access, 2020, 8: 87749-87761. doi: 10.1109/ACCESS.2020.2993076
    [5] CHIARIOTTI P, MARTARELLI M, CASTELLINI P. Acoustic beamforming for noise localization-Review, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120: 422-448. doi: 10.1016/j.ymssp.2018.09.019
    [6] MENG F Y, LI Y, MASIERO B, et al. Signal reconstruction of fast moving sound sources using compressive beamforming[J]. Applied Acoustics, 2019, 150: 236-245. doi: 10.1016/j.apacoust.2019.02.012
    [7] ZHANG C Q, GAO Z Y, CHEN Y Y, et al. Locating and tracking sound sources on a horizontal axis wind turbine using a compact microphone array based on beamforming[J]. Applied Acoustics, 2019, 146: 295-309. doi: 10.1016/j.apacoust.2018.10.006
    [8] NING F L, SONG J H, HU J L, et al. Sound source localization of non-synchronous measurements beamforming with block Hermitian matrix completion[J]. Mechanical Systems and Signal Processing, 2021, 147: 107118. doi: 10.1016/j.ymssp.2020.107118
    [9] 袁芳, 闫建伟, 张勇, 等. 汽车鸣笛声实时抓拍的理论研究和系统实现[J]. 电声技术, 2018(11): 13-15, 21.
    [10] CHELLIAH K, RAMAN G, MUEHLEISEN R T. An experimental comparison of various methods of nearfield acoustic holography[J]. Journal of Sound and Vibration, 2017, 403: 21-37. doi: 10.1016/j.jsv.2017.05.015
    [11] AUJOGUO N, ROSS A, ATTENDU J M. Time-space domain nearfield acoustical holography for visualizing normal velocity of sources[J]. Mechanical Systems and Signal Processing, 2020, 139: 106363. doi: 10.1016/j.ymssp.2019.106363
    [12] VALDIVIA N P. Krylov Subspace iterative methods for time domain boundary element method based nearfield acoustical holography[J]. Journal of Sound and Vibration, 2020, 484: 115498. doi: 10.1016/j.jsv.2020.115498
    [13] 张揽月, 丁丹丹, 杨德森, 等. 阵元随机均匀分布球面阵列联合噪声源定位方法[J]. 物理学报, 2017, 66(1): 140-151.
    [14] BOORA R, DHULL S K. A TDOA-based multiple source localization using delay density maps[J]. Sadhana-Academy Proceedsings in Engineering Sciences, 2020, 45(1): ; 204.
    [15] 张焕强, 黄时春, 蒋伟康. 基于传声器阵列的汽车鸣笛声定位算法及实现[J]. 噪声与振动控制, 2018, 38(3): 10-14. doi: 10.3969/j.issn.1006-1355.2018.03.002
    [16] 杨殿阁, 张凯, 苗丰, 等. 运动声源快速定位的声达时差法[J]. 声学学报, 2020, 45(1): 69-76.
    [17] ADRITYA H B B C H, SAPUTRA H M. Azimuth estimation based on generalized cross correlation phase transform (GCC-PHAT) using Equilateral triangle microphone array[C]// 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). Tangerang, Indonesia: IEEE, 2019: 89-93.
    [18] ZHU M X, WANG Y B, CHANG D G, et al. Quantitative comparison of partial discharge localization algorithms using time difference of arrival measurement in substation[J]. International Journal of Electrical Power & Energy systems, 2019, 104: 10-20.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  240
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2021-04-07

目录

    /

    返回文章
    返回