高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于模型预测控制的移动机器人户外导航方法

郭明阳 刘爽

郭明阳, 刘爽. 基于模型预测控制的移动机器人户外导航方法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210102001
引用本文: 郭明阳, 刘爽. 基于模型预测控制的移动机器人户外导航方法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20210102001
GUO Mingyang, LIU Shuang. Outdoor Navigation Method of Mobile Robot Based on Model Predictive Control[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210102001
Citation: GUO Mingyang, LIU Shuang. Outdoor Navigation Method of Mobile Robot Based on Model Predictive Control[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20210102001

基于模型预测控制的移动机器人户外导航方法

doi: 10.14135/j.cnki.1006-3080.20210102001
基金项目: 国家自然科学基金(51975214)
详细信息
    作者简介:

    郭明阳(1995—),男,洛阳人,硕士生,主要研究方向:机器人轨迹规划和轨迹跟踪。E-mail:guomingyang5512@163.com

    通讯作者:

    刘 爽,E-mail:shuangliu@ecust.edu.cn

  • 中图分类号: TM63; TP242

Outdoor Navigation Method of Mobile Robot Based on Model Predictive Control

  • 摘要: 针对户外巡检、户外清洁、智能农业等户外场景对自主机器人的使用需求,设计了一种具有很强实时性和稳定性的移动机器人户外导航方法。移动机器人收到户外GPS航迹点后,使用激光雷达实时获取周边环境点云并构建局部栅格图,在栅格地图内使用基于路段走向改进的A-star算法搜索局部避障路径,最后设计使用模型预测控制器以跟踪避障轨迹。为了验证该导航方法的可行性,在仿真和户外环境下分别进行了对比实验,实验结果表明所生成的轨迹稳定平滑并能有效避障,模型预测控制器轨迹跟踪精度高、耗时短,实现了户外移动机器人高效率、稳定导航。

     

  • 图  1  局部栅格图

    Figure  1.  Local grid map

    图  2  局部规划起点和终点

    Figure  2.  Starting point and ending point of local planning

    图  3  $ {A}^{*} $启发函数

    Figure  3.  $ {A}^{*} $ heuristic function

    图  4  路段方向与搜索方向

    Figure  4.  Road direction and search direction

    图  5  模型预测控制原理图

    Figure  5.  Model predictive control diagram

    图  6  机器人位姿

    Figure  6.  Robot pose

    图  7  仿真环境

    Figure  7.  Simulation environment

    图  8  改进A*规划和MPC跟踪效果

    Figure  8.  Improved A* planning and MPC tracking results

    图  9  Gmapping&Navigation导航效果

    Figure  9.  Gmapping&Navigation results

    图  10  跟踪误差

    Figure  10.  Tracking error in x, y

    图  11  航迹点及障碍物

    Figure  11.  GPS waypoints and obstacles

    图  12  户外导航轨迹

    Figure  12.  Outdoor navigation trajectory

    图  13  MPC避障

    Figure  13.  MPC Obstacle avoidance

    表  1  MPC控制器参数

    Table  1.   Related parameters of MPC controller

    $ {N}_{c} $/step$ {N}_{p} $/step$ {T}_{0} $/s$ {W}_{1} $$ {W}_{2} $$ {W}_{3} $
    10100.151585
    下载: 导出CSV

    表  2  规划及耗时参数

    Table  2.   Planning and time consuming parameters

    Consumed time for planning/sPath length/mNumber of turnsConsumed time for tracking/s
    Improved $ {A}^{*} $0.17115.1216243
    Dijkstra0.39113.3720281
    下载: 导出CSV
  • [1] ABDELRASOUL Y, SAMAN A B S H M, SEBASTIAN P. A quantitative study of tuning ROS gmapping parameters and their effect on performing indoor 2D SLAM[C]//2016 2nd IEEE international symposium on robotics and manufacturing automation (ROMA). IEEE, 2016: 1-6.
    [2] WANG P, CHEN Z, ZHANG Q, et al. A loop closure improvement method of Gmapping for low cost and resolution laser scanner[J]. IFAC-PapersOnLine, 2016, 49(12): 168-173. doi: 10.1016/j.ifacol.2016.07.569
    [3] LI X, LIU F, LIU J, et al. Obstacle avoidance for mobile robot based on improved dynamic window approach[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2017, 25(2): 666-676.
    [4] ASAMI K, HAGIWARA H, KOMORI M. Visual Navigation System with Real-time Image Processing for Patrol Service Robot[J]. International Conference on Trust, Security and Privacy in Computing and Communications, 2011: 1229-1234.
    [5] ZUO M, ZENG G P, TU X Y. Research on navigation of substation patrol robot based on guideline visual recognition[J]. International Conference on Mechanic Automation and Control Engineering, 2010: 6123-6126.
    [6] SHIN Y, JUNG C, CHUNG W. Drivable road region detection using a single laser range finder for outdoor patrol robots[C]//2010 IEEE Intelligent Vehicles Symposium. IEEE, 2010: 877-882.
    [7] JIN J, JUNG C, KIM D, et al. Development of an autonomous outdoor patrol robot in private road environment[C]//ICCAS 2010. IEEE, 2010: 1918-1921.
    [8] GARCÍA CUENCA L, SANCHEZ-SORIANO J, PUERTAS E, et al. Machine learning techniques for undertaking roundabouts in autonomous driving[J]. Sensors, 2019, 19(10): 2386. doi: 10.3390/s19102386
    [9] XIAO L, GAO F. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle system dynamics, 2010, 48(10): 1167-1192. doi: 10.1080/00423110903365910
    [10] MARINO R, SCALZI S, NETTO M. Nested PID steering control for lane keeping in autonomous vehicles[J]. Control Engineering Practice, 2011, 19(12): 1459-1467. doi: 10.1016/j.conengprac.2011.08.005
    [11] IBARI B, BENCHIKH L, ELHACHIMI A R H, et al. Backstepping approach for autonomous mobile robot trajectory tracking[J]. Indones J ElectrEng Comput Sci, 2016, 2(3): 478-485. doi: 10.11591/ijeecs.v2.i3.pp478-485
    [12] ZHANG Z, LI L. Design and implementation of two-wheeled mobile robot by variable structure Sliding Mode Control[C]//2016 35th Chinese Control Conference (CCC). IEEE, 2016: 5869-5873.
    [13] JALALI M, KHOSRAVANI S, KHAJEPOUR A, et al. Model predictive control of vehicle stability using coordinated active steering and differential brakes[J]. Mechatronics, 2017, 48: 30-41. doi: 10.1016/j.mechatronics.2017.10.003
    [14] CAI J, JIANG H, CHEN L, et al. Implementation and development of a trajectory tracking control system for intelligent vehicle[J]. Journal of Intelligent & Robotic Systems, 2019, 94(1): 251-264.
    [15] BORMANN R, JORDAN F, HAMPP J, et al. Indoor coverage path planning: Survey, implementation, analysis[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1718-1725.
    [16] CHEN Y, HUANG Y. An Overtaking Obstacle Algorithm for Autonomous Driving based on Dynamic Trajectory Planning[C]//2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2018: 1315-1322.
    [17] AGARWAL D, BHARTI P S. A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms[J]. International Journal of Mechanical and Mechatronics Engineering, 2018, 12(6): 608-624.
    [18] BACHA A, BAUMAN C, FARUQUE R, et al. Odin: Team victortango’s entry in the darpa urban challenge[J]. Journal of FieldRobotics, 2008, 25(8): 467-492.
    [19] BOHREN J, FOOTE T, KELLER J, et al. Little ben: The ben franklin racing team's entry in the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 598-614. doi: 10.1002/rob.20260
    [20] LE A V, PRABAKARAN V, SIVANANTHAM V, et al. Modified a-star algorithm for efficient coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor[J]. Sensors, 2018, 18(8): 2585. doi: 10.3390/s18082585
    [21] GAO F, LIN Y, SHEN S. Gradient-based online safe trajectory generation for quadrotor flight in complex environments[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 3681-3688.
    [22] WANG C, LIU X, YANG X, et al. Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy[J]. Applied Sciences, 2018, 8(2): 231. doi: 10.3390/app8020231
    [23] 姚楚阳, 刘爽. 一种可升降式变电站室内巡检机器人控制系统设计[J/OL]. 华东理工大学学报(自然科学版), https://doi.org/10.14135/j.cnki.1006-3080.20191203005.
    [24] WANG D, WEI W, YEBOAH Y, et al. A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots[J]. Journal of Intelligent & Robotic Systems, 2020, 98(2): 439-453.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  81
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-02
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回