高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

热活化酸浸托贝莫来石制备多孔SiO2材料及其吸附性能

王志增 李通 王冬云 崔晓昱 丁锡锋 崔崇

王志增, 李通, 王冬云, 崔晓昱, 丁锡锋, 崔崇. 热活化酸浸托贝莫来石制备多孔SiO2材料及其吸附性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201229002
引用本文: 王志增, 李通, 王冬云, 崔晓昱, 丁锡锋, 崔崇. 热活化酸浸托贝莫来石制备多孔SiO2材料及其吸附性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201229002
WANG Zhizeng, LI Tong, WANG Dongyun, CUI Xiaoyu, DING Xifeng, CUI Chong. Preparation of Porous SiO2 Materials from Tobermorite and Its Adsorption Performance[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201229002
Citation: WANG Zhizeng, LI Tong, WANG Dongyun, CUI Xiaoyu, DING Xifeng, CUI Chong. Preparation of Porous SiO2 Materials from Tobermorite and Its Adsorption Performance[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201229002

热活化酸浸托贝莫来石制备多孔SiO2材料及其吸附性能

doi: 10.14135/j.cnki.1006-3080.20201229002
基金项目: 国家自然科学基金(51772153);浙江清华长三角研究院宁波分院鄞州区专项(20191218)
详细信息
    作者简介:

    王志增(1993—),男,山东省菏泽,在读博士生,主要研究方向:矿物材料功能化。E-mail:775717646@qq.com

    通讯作者:

    崔崇,E-mail:cuichong@njust.edu.cn

  • 中图分类号: TQ170.1

Preparation of Porous SiO2 Materials from Tobermorite and Its Adsorption Performance

  • 摘要: 通过水热合成制备具有良好的结晶形态的托贝莫来石(TOB),用不同温度对TOB进行加热活化(H-TOB),然后对H-TOB进行酸处理成功制备出多孔二氧化硅材料(300AH-TOB),并用XRD、N2吸-脱附、SEM、TEM等测试方法对多孔SiO2材料进行表征,研究了其形成机理。结果表明,制备的多孔SiO2材料比表面积达到了570.25 m2/g,总孔容为0.747 m3/g。TOB经过热活化和酸处理后,钙离子选择性溶出,TOB的SiO2骨架保留下来,在TOB的链状八元环结构上原位形成大量的纳米尺度的孔结构。通过静态吸附实验探讨了TOB、300H-TOB、300AH-TOB对碱性红2和结晶紫两种有机染料的吸附性能,在0.4 g的加入量下,TOB的吸附率分别为56.35%、47.69%;300H-TOB的吸附率为25.57%、42.69%;300AH-TOB吸附率为91.46%、88.86%。由托贝莫来石制备的多孔材料对有机染料具有良好的吸附作用,具有作为染料吸附剂的应用潜力。

     

  • 图  1  TOB(a)和300AH-TOB(b)的TG/DSC曲线

    Figure  1.  TG/DSC curves of TOB and 300AH-TOB

    图  2  (a) 不同温度热处理TOB的XRD图谱;(b)煅烧托贝莫来石酸处理后的XRD图谱

    Figure  2.  XRD results of the calcined TOB samples (a) and the insoluble matters of the calcined TOB (b).

    图  3  N2吸附-脱附等温线(a)和由2D-NLDFT方法计算的孔径分布曲线(b)

    Figure  3.  Nitrogen adsorption-desorption isotherms (a) and Pore size distribution curves calculated by 2D-NLDFT method (b)

    图  4  TOB, 300H-TOB和300AH-TOB的SEM形貌

    Figure  4.  SEM morphology of TOB, 300H-TOB and 300AH-TOB

    图  5  TOB, 300H-TOB和300AH-TOB的透射电镜形貌及衍射斑点图

    Figure  5.  TEM morphology and diffraction spectrogram of TOB (a), 300H-TOB (b), and 300AH-TOB (c)

    图  6  TOB的多孔形成示意图

    Figure  6.  Schematic model for the possible formation of porous silica from TOB.

    图  10  300AHTOB吸附CV的(a)Langmuir和(b)Freundlich等温吸附模型拟合

    Figure  10.  Langmuir and Freundlich isotherms for CV adsorption on 300AH-TOB

    图  7  TOB、300H-TOB和300AH-TOB对碱性红2(a)和结晶紫(b)的吸附

    Figure  7.  TOB、300H-TOB and 300AH-TOB adsorption of basic red 2 (a) and crystal violet (b)

    图  8  TOB, 300H-TOB和300AH-TOB的Zata电位图

    Figure  8.  Zeta potential of TOB, 300H-TOB and 300AH-TOB

    图  9  300AHTOB吸附ST的(a)Langmuir和(b)Freundlich等温吸附模型拟合

    Figure  9.  Langmuir and Freundlich isotherms for ST adsorption on 300AH-TOB

    图  11  300AHTOB的再生循环

    Figure  11.  Regeneration of 300AHTOB

    表  1  TOB、300H-TOB、300AH-TOB的化学成分

    Table  1.   Chemical composition of TOB, 300H-TOB, 300AH-TOB

    SampleSiO2/%CaO/%Others/%
    TOB49.3138.3612.33
    300H-TOB54.7142.562.73
    300AH-TOB90.1109.89
    下载: 导出CSV

    表  2  不同温度热活化TOB经过酸处理后的纳米孔道参数

    Table  2.   Porosity parameters of the HCl acid treatment samples pre-calcined at different temperatures.

    SampleSBET/(m2/g)Sexternal/(m2·g−1)Smicro/(m2·g−1)Vmicro/(cm3·g−1)Vmeso/(cm3·g−1)Vt/(cm3·g−1)
    TOB152.14123.8128.330.0110.6070.611
    300AH-TOB570.25437.76132.490.0570.6520.747
    500AH-TOB539.15421.21117.940.050.6510.734
    700AH-TOB440.18337.93102.250.0430.5140.576
    SBET: Specific surface area;
    Smicro: Micropores specific surface area by t-plot method;
    Sexternal:External surface area by t-plot method
    Vt: Total pore volume;
    Vmicro:Microporous volume by t-plot method
    Vmeso:Mesopore volume
    下载: 导出CSV

    表  3  ST等温吸附模型拟合参数

    Table  3.   Isotherm parameters of ST adsorption on 300AHTOB

    T/KFreundlichLangmuir
    Kf1/nR2b(L·mg−1)qm/(mg·g−1)R2
    2983.850.410.953 0.1422.570.970
    3083.030.420.9490.0920.530.989
    3182.940.310.7650.0814.820.978
    下载: 导出CSV

    表  4  CV等温吸附模型拟合参数

    Table  4.   Isotherm parameters of CV adsorption on 300AHTOB.

    T/KFreundlichLangmuir
    Kf1/nR2b(L·mg−1)qm(mg·g−1)R2
    2987.520.190.821 0.2618.660.902
    3086.020.330.9510.1327.730.968
    3187.130.340.7970.0838.410.986
    下载: 导出CSV
  • [1] 廖雯丽.锆渣制备硅酸钙绝热材料的研究[D].南京: 南京理工大学, 2007.
    [2] HEDDLE M F. Preliminary notice of substances which may prove to be new minerals[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1880, 4(18): 117-123. doi: 10.1180/minmag.1880.004.18.04
    [3] TAYLOR H F W. Crestmoreite and riversideite[J]. Clay Minerals, 1953, 30(222): 155-165.
    [4] CLARINGBULL G F, HEY M H. A re-examination of tobermorite[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1952, 29(218): 960-962.
    [5] BIAGIONI C, BONACCORSI E, MERLINO S, et al. New data on the thermal behavior of 14Å tobermorite[J]. Cement and Concrete Research, 2013, 49(Complete): 48-54.
    [6] MITSUDA T. Paragenesis of 11Å tobermorite and poorly crystalline hydrated magnesium silicate[J]. Cement & Concrete Research, 1973, 3(1): 71-80.
    [7] MAESHIMA T, NOMA H, SAKIYAMA M, et al. Natural 1.1 and 1.4 nm tobermorites from Fuka, Okayama, JapanSi NMR and thermal behavior[J]. Cement & Concrete Research, 2003, 33(10): 1515-1523.
    [8] MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3): 577-590. doi: 10.1127/0935-1221/2001/0013-0577
    [9] 何光辉, 孙俊民, 魏小芬, 等. 粉煤灰综合利用过程中斜托勃莫来石晶体化学行为研究[J]. 人工晶体学报, 2015, 44(09): 2379-2384. doi: 10.3969/j.issn.1000-985X.2015.09.011
    [10] GARD J A. A further investigation of tobermorite from Loch Eynort, Scotland[J]. Mineralogical Magazine, 1957, 31(236): 361-370. doi: 10.1180/minmag.1957.031.236.03
    [11] Eℓ-HEMALY S A S, MITSUDA T, TAYLOR H F W. Synthesis of normal and anomalous tobermorites[J]. Cement & Concrete Research, 1977, 7(4): 429-438.
    [12] 鲍梦燕, 郭晓潞, 施惠生. 水热合成托贝莫来石晶须及其耐高温性能的研究进展[J]. 功能材料, 2017, 48(11): 11075-11080.
    [13] 吕松青, 马淑花, 郭曦尧, 等. 粉煤灰动态水热合成纳米复合托贝莫来石晶须及其表征[J]. 过程工程学报, 2014, 14(03): 487-492.
    [14] GUO X, SONG M. Micro-nanostructures of tobermorite hydrothermal-synthesized from fly ash and municipal solid waste incineration fly ash[J]. Construction and Building Materials, 2018, 191: 431-439.
    [15] 李光辉, 张吉清, 罗骏, 等. 硅酸钠溶液合成托贝莫来石晶须[J]. 硅酸盐学报, 2012, 40(012): 1721-1727.
    [16] 赵秦仪, 王志增, 许欣, 等. 托贝莫来石晶体结构、热行为与合成研究现状[J]. 硅酸盐学报, 2020, 48(10): 1-16.
    [17] 张晓华, 邢宝恒. 以废混凝土做再生粗骨料配制混凝土探索试验[J]. 混凝土, 2010(11): 98-100.
    [18] 胡彪. 利用废弃加气混凝土制备硅酸钙绝热材料[D]. 南京: 南京理工大学, 2015.
    [19] 于方圆, 周莉, 何妍, 等. 离子液体修饰的三蝶烯多孔材料用于去除水溶液中阴离子染料[J]. 华东理工大学学报(自然科学版), 2020, 46(02): 155-163.
    [20] 王云辉, 牟广宇, 魏清莲, 黄永民. 多孔氧化铝的制备及其对酸性品红的吸附性能[J]. 华东理工大学学报(自然科学版), 2015, 41(05): 643-651. doi: 10.3969/j.issn.1006-3080.2015.05.011
    [21] 姚炜屹, 王际童, 乔文明, 等. 活性炭纤维孔结构和表面含氧官能团对甲醛吸附性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 697-703.
    [22] 杨秀丽, 崔晓昱, 崔崇, 等. 托贝莫来石晶体的高温相变规律研究[J]. 光谱学与光谱分析, 2013(8): 2227-2230. doi: 10.3964/j.issn.1000-0593(2013)08-2227-04
    [23] TANG X L, CUI C, CUI X Y, et al. High-temperature phase transition and the activity of tobermorite[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2014, 29(2): 298-301.
    [24] BIAGIONI C, BONACCORSI E, LEZZERINI M, et al. Thermal behaviour of Al-rich tobermorite[J]. European Journal of Mineralogy, 2016, 28(1): 23-32. doi: 10.1127/ejm/2015/0027-2499
    [25] ZHAO Q, LI T, CUI C, et al. Preparation of porous silica powder via selective acid leaching of calcined tobermorite[J]. Powder Technology, 2020, 375: 420-432. doi: 10.1016/j.powtec.2020.08.008
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  258
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 网络出版日期:  2021-04-27

目录

    /

    返回文章
    返回