Curriculum Evaluation System Based on Association Rules and Cluster Analysis
-
摘要: 高校在长期的教学活动中积累了大量的课程数据,如何利用数据资源分析课程教学状况,为提高课程教学质量提供决策支持,具有重要的研究价值。本文设计实现了一个基于关联规则与聚类分析的课程评价体系,对课程评价系统进行了功能需求分析,并对课程评价数据进行预处理。采用FP-growth算法对学生课程成绩数据进行关联规则分析,采用K-means++算法进行聚类分析,提高了课程数据分析的精度,实现了课程评价的自动化,提高了效率和评价的客观性。
-
关键词:
- 课程评价 /
- 数据预处理 /
- FP-growth算法 /
- 关联规则 /
- 数据聚类
Abstract: The quality of curriculum is the fundamental factor for the continuous improvement of the teaching quality and it is also the basis to realize the reform of higher education. In the long-term teaching activities, colleges and universities have accumulated a large number of curriculum data. How to use these resources to evaluate the teaching situation and provide decision support for improving the quality of course teaching is of great research value. This paper designs a curriculum evaluation system based on the association rules and cluster analysis, analyzes the functional requirements of the curriculum evaluation, and preprocesses the course evaluation data. The FP-growth algorithm is used to analyze the association rules of the score of student course and the K-means++ algorithm is used for cluster analysis. These can effectively improve the analysis accuracy of course data, realize the automation of course evaluation, and improve the efficiency and objectivity of evaluation.-
Key words:
- curriculum evaluation /
- data preprocessing /
- FP-growth algorithm /
- association rule /
- data cluster
-
表 1 考试成绩离散化处理
Table 1. Discretization of examination score
Discretization judgment Grade Representation Examination result>Average score Excellent 1 Examination result≤Average score Not excellent 0 表 2 课程关联规则
Table 2. Curriculum association rules
Antecedent Consequent Confidence level/% Linear algebra,
theory of probability,
digital logicDiscrete
mathematics90.00 Assembly language,
microcomputer principlesOperating system 96.29 College english,
introduction to computerComputer
professional english88.76 Assembly language,
composition principle,
computer architectureMicrocomputer
principles97.23 $ \vdots $ $\vdots $ $\vdots $ 表 3 第2个聚类中心的计算
Table 3. Calculation of the second clustering center
Sample number D(x)2 P(x) S 1 8 0.200 0.200 2 13 0.325 0.525 3 5 0.125 0.650 4 10 0.250 0.900 5 1 0.025 0.925 6 0 0 0.925 7 2 0.050 0.975 8 1 0.025 1 表 4 离散数学课程最终聚类中心
Table 4. Final clustering center ofdiscrete mathematics
Type Standardized test scores Standardized regular scores The first 0.9862 0.8824 The second 0.9598 0.7149 The third 0.9422 0.4379 The fourth 0.6000 0.5975 -
[1] 陈利民, 燕珍, 杜金涛, 等. 基于发展性评价的高校教师教学评价体系构建[J]. 微型电脑应用, 2019, 35(9): 125-127. doi: 10.3969/j.issn.1007-757X.2019.09.038 [2] YE Q, JIAO M. The research of college computer courses teaching quality improvement[C]//2011 6th International Conference on Computer Science & Education. Singapore: IEEE, 2011: 572-576. [3] VARGAS H, HERADIO R, CHACON J, et al. Automated assessment and monitoring support for competency-based courses[J]. IEEE Access, 2019, 7: 41043-41051. doi: 10.1109/ACCESS.2019.2908160 [4] 乐惠骁, 范逸洲, 贾积有, 等. 优秀的慕课学习者如何学习——慕课学习行为模式挖掘[J]. 中国电化教育, 2019(2): 72-79. doi: 10.3969/j.issn.1006-9860.2019.02.012 [5] 赵辉. 数据挖掘技术在学生成绩分析中的研究及应用[D]. 辽宁大连: 大连海事大学, 2007. [6] 朱跃. 数据挖掘在成绩分析中的应用性研究[D]. 贵阳: 贵州大学, 2009. [7] 王婷婷. 数据仓库和数据挖掘在学生成绩分析中的应用研究[D]. 武汉: 武汉科技大学, 2007. [8] 刘博鹏, 樊铁成, 杨红. 基于数据挖掘技术的学生成绩预警应用研究[J]. 四川大学学报(自然科学版), 2019, 56(2): 267-272. [9] ARTHUR D, VASSILVITSKII S. K-means++: The advantage of careful seeding[C]//18th ACM-SIAM Symposium on Discrete Algorithms. USA: ACM, 2007: 1027-1035. [10] ANWAR A, MAHMOOD A N, TARI Z. Identification of vulnerable lines in large power grid based on FP-growth algorithm[J]. Information Systems, 2015, 53: 201-212. doi: 10.1016/j.is.2014.12.001 [11] YUAN J, TIAN Y. Practical privacy-preserving MapReduce based K-Means clustering over large-scale dataset[J]. IEEE Transactions on Cloud Computing, 2019, 7(2): 568-579. doi: 10.1109/TCC.2017.2656895 [12] KARLEKAR A, SEAL A, KREJCAR O, et al. Fuzzy K-means using non-linear S-distance[J]. IEEE Access, 2019, 7: 55121-55131. doi: 10.1109/ACCESS.2019.2910195 -