高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

喷嘴内螺纹结构对射流破裂长度的影响

刘禹 施浙杭 郝叶峻 王子钰 赵辉 刘海峰

刘禹, 施浙杭, 郝叶峻, 王子钰, 赵辉, 刘海峰. 喷嘴内螺纹结构对射流破裂长度的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201228003
引用本文: 刘禹, 施浙杭, 郝叶峻, 王子钰, 赵辉, 刘海峰. 喷嘴内螺纹结构对射流破裂长度的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201228003
LIU Yu, SHI Zhehang, HAO Yejun, WANG Ziyu, ZHAO Hui, LIU Haifeng. Effects of Nozzle Screw Structure on Breakup Length of Jet[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201228003
Citation: LIU Yu, SHI Zhehang, HAO Yejun, WANG Ziyu, ZHAO Hui, LIU Haifeng. Effects of Nozzle Screw Structure on Breakup Length of Jet[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201228003

喷嘴内螺纹结构对射流破裂长度的影响

doi: 10.14135/j.cnki.1006-3080.20201228003
基金项目: 国家重点研发计划项目(2018YFC0808500);国家自然科学基金项目(21878095)
详细信息
    作者简介:

    刘禹:刘 禹(1996-),男,江苏淮安人,硕士生,主要从事多相流气液雾化的研究。E-mail: y30180833@mail.ecust.edu.cn

    通讯作者:

    赵 辉(1984—),男,博士,副教授,E-mail: zhaohui@ecust.edu.cn

  • 中图分类号: O359+.1

Effects of Nozzle Screw Structure on Breakup Length of Jet

  • 摘要: 使用高速相机研究了喷嘴螺纹结构对液体射流破裂的影响。实验采用5种不同直径(4.00、4.80、7.50、8.75、10.80 mm)的喷嘴,螺纹深度范围0.40~1.25 mm,液体射流雷诺数范围500~22 600。在实验范围内结果显示:当雷诺数小于1 600时,液体射流破裂长度随着雷诺数的增加而增加,喷嘴螺纹结构对液体射流破裂长度的影响较小;随着雷诺数的增加,液体射流破裂长度随着雷诺数的增加先增加后减小,喷嘴螺纹结构影响显著,其液体射流破裂长度小于光滑喷嘴;当雷诺数大于7 000时,液体射流破裂长度随着雷诺数的增加而增加,喷嘴螺纹结构继续促进液体射流破裂长度的减小;同时,实验结果还表明喷嘴螺纹结构对小直径喷嘴(直径小于5 mm)的影响更显著。最后,以量纲为-螺纹深度、雷诺数和韦伯数等参数建立了液体射流破裂长度预测关系式。

     

  • 图  1  (a) 实验装置示意图;(b) 螺纹结构示意图

    1—Liquid storage; 2—Pump; 3—Valve; 4—Tube rotameter; 5—Nozzle; 6—High speed camera; 7—Computer;

    Figure  1.  Sketch of experimental facilities and setup; (b) Schematic diagram of thread structure

    图  3  光滑喷嘴8(左)和螺纹喷嘴9(右)射流对比

    Figure  3.  Jet images of smooth nozzle(left) and screw structure nozzle(right)

    图  4  ul=2.31 m/s (Re=22 600)直径脉动与采样时间关系图

    Figure  4.  Diagram of diameter pulsation and sampling time(ul=2.31 m/s)

    图  5  ul=2.31 m/s (Re=22 600)的喷嘴液体射流直径脉动能谱图

    Figure  5.  Energy spectra of nozzle liquid jet diameter pulsation (ul=2.31 m/s)

    图  6  液体射流破裂长度示意图

    Figure  6.  Breakup length of liquid jet

    图  7  不同喷嘴射流破裂长度随Re变化趋势图(拟合曲线来自公式8、10、11)

    Figure  7.  Trend diagram of different nozzle jet breakup length changing with Re(fitting curve from formula 8, 10, 11)

    图  8  量纲为一射流破裂长度分区

    Figure  8.  Dimensionless jet fracture length partition

    图  9  螺纹喷嘴9 Re=7 000前后工况射流对比图

    Figure  9.  The screw nozzle jet images with different Re(nearby 7 000)

    表  1  实验喷嘴尺寸

    Table  1.   Size of experimental nozzle

    No. D/mm a/mm X
    1 4.00 0 0
    2 4.00 0.40 0.10
    3 4.80 0 0
    4 4.80 0.45 0.09
    5 7.50 0 0
    6 7.50 0.10 0.01
    7 7.50 0.75 0.10
    8 8.75 0 0
    9 8.75 1.00 0.11
    10 10.80 0 0
    11 10.80 1.25 0.12
    下载: 导出CSV
  • [1] LASHERAS J C, HOPFINGER E J. Liquid jet instability and atomization in a coaxial gas stream[J]. Annual Review of Fluid Mechanics, 1998, 32(1): 275-308.
    [2] DESHPANDE S S, GURJAR S R, TRUJILLO M F. A computational study of an atomizing liquid sheet[J]. Physics of Fluids, 2015, 27(8): 082018.
    [3] KANG Z, LI Q, CHENG P, et al. Effects of self-pulsation on the spray characteristics of gas–liquid swirl coaxial injector[J]. Acta Astronautica, 2016, 127: 249-259. doi: 10.1016/j.actaastro.2016.05.038
    [4] 吴炬晖, 章文斌, 赵辉, 等. 表面活性剂对二次雾化袋状破裂特性的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(3): 329-334.
    [5] MITCHELL B R, KLEWICKI J C, KORKOLIS Y P, et al. Normal impact force of Rayleigh jets[J]. Physical Review Fluids, 2019, 4(11): 113603. doi: 10.1103/PhysRevFluids.4.113603
    [6] KOURMATZIS A, MASRI A R. Air-assisted atomization of liquid jets in varying levels of turbulence[J]. Journal of Fluid Mechanics, 2014, 764: 95-132.
    [7] RAYLEIGH L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, 10(1): 4-13.
    [8] WEBER C. Zum zerfall eines flüssigkeitsstrahles[J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1931, 11: 136-141.
    [9] LEFEBVRE A H. Atomization and Sprays[M]. New York City, Hemisphere Pub, Corp, 1988.
    [10] BIROUK M, LEKIC N J A, SPRAYS. Liquid jet breakup in quiescent atmosphere: A review[J]. Atomization and Spray, 2009, 19(6): 501-528. doi: 10.1615/AtomizSpr.v19.i6.20
    [11] 赵志伟, 苏永升. 不同出口角度扩压器的内部流动及离心压缩机级性能数值研究[J]. 华东理工大学学报(自然科学版), 2017, 43(2): 266-272.
    [12] 吴兆伟, 施浙杭, 赵辉, 等. 表面张力变化对含气泡液体射流破裂的影响[J]. 化工学报, 2020, DOI: 10.11949/0438-1157.20200824.
    [13] VAN HOEVE W, GEKLE S, SNOEIJER J H, et al. Breakup of diminutive Rayleigh jets[J]. Physics of Fluids, 2010, 22(12): 122003. doi: 10.1063/1.3524533
    [14] ARAI M, AMAGAI K. Surface wave transition before breakup on a laminar liquid jet[J]. Internationl Journal of Heat and Fluid Flow, 1999, 20(5): 507-512. doi: 10.1016/S0142-727X(99)00039-9
    [15] SALVADOR F J, RUIZ S, CRIALESI-ESPOSITO M, et al. Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation[J]. International Journal of Multiphase Flow, 2018, 102: 49-63. doi: 10.1016/j.ijmultiphaseflow.2018.01.019
    [16] 石仲璟, 王学生, 陈琴珠. 乙氧基化反应喷嘴雾化和反应性能[J]. 华东理工大学学报(自然科学版), 2017, 43(2): 273-279.
    [17] MARMOTTANT P, VILLERMAUX E. On spray formation[J]. Journal of Fluid Mechanics, 2004, 498: 73-111. doi: 10.1017/S0022112003006529
    [18] 李建昌, 李宏宇, 陈建, 等. 喷嘴结构对真空喷射雾化性能影响研究[J]. 真空科学与技术学报, 2014, 34(2): 101-105. doi: 10.3969/j.issn.1672-7126.2014.02.01
    [19] ETZOLD M, DESWAL A, CHEN L, et al. Break-up length of liquid jets produced by short nozzles[J]. International Journal of Multiphase Flow, 2018, 99: 397-407. doi: 10.1016/j.ijmultiphaseflow.2017.11.006
    [20] GONG C, OU M, JIA W. The effect of nozzle configuration on the evolution of jet surface structure[J]. Results in Physics, 2019, 15: 102572. doi: 10.1016/j.rinp.2019.102572
    [21] LI Y, SISOEV G M, SHIKHMURZAEV Y D. On the breakup of spiralling liquid jets[J]. Journal of Fluid Mechanics, 2019, 862: 364-384. doi: 10.1017/jfm.2018.956
    [22] UDDIN J, DECENT S P, SIMMONS M J H. Non-linear waves along a rotating non-Newtonian liquid jet[J]. International Journal of Engineering Science, 2008, 46(12): 1253-1265. doi: 10.1016/j.ijengsci.2008.06.016
    [23] PĂRĂU E I, DECENT S P, KING A C, et al. Nonlinear travelling waves on a spiralling liquid jet[J]. Wave Motion, 2006, 43(7): 599-618. doi: 10.1016/j.wavemoti.2006.05.004
    [24] DECENT S P, KING A C, SIMMONS M J H, et al. The trajectory and stability of a spiralling liquid jet: Viscous theory[J]. Applied Mathematical Modelling, 2009, 33(12): 4283-4302. doi: 10.1016/j.apm.2009.03.011
    [25] SHIKHMURZAEV Y D, SISOEV G M. Spiralling liquid jets: Verifiable mathematical framework, trajectories and peristaltic waves[J]. Journal of Fluid Mechanics, 2017, 819: 352-400. doi: 10.1017/jfm.2017.169
    [26] REZAYAT S, FARSHCHI M, GHORBANHOSEINI M. Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels[J]. International Journal of Multiphase Flow, 2019, 111: 315-338. doi: 10.1016/j.ijmultiphaseflow.2018.10.001
    [27] LIU C, LIU F, YANG J, et al. Experimental investigations of spray generated by a pressure swirl atomizer[J]. Journal of the Energy Institute, 2019, 92(2): 210-221. doi: 10.1016/j.joei.2018.01.014
    [28] SIKRORIA T, KUSHARI A. Experimental analysis and phenomenological model for liquid jet breakup in swirling flow of air[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(9): 091015. doi: 10.1115/1.4044060
    [29] LU H, LIU H F, LI W F, et al. Bubble formation in an annular granular jet dispersed by a central air round jet[J]. AIChE Journal, 2013, 59(6): 1882-1893. doi: 10.1002/aic.13974
    [30] 戴干策, 陈敏恒. 化工流体力学[M]. 北京: 化学工业出版社, 2005.
    [31] HASSLBERGER J, KETTERL S, KLEIN M, et al. Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis[J]. Journal of Fluid Mechanics, 2018, 859: 819-838.
    [32] EGGERS J, VILLERMAUX E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3): 036601. doi: 10.1088/0034-4885/71/3/036601
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  124
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 网络出版日期:  2021-04-07

目录

    /

    返回文章
    返回