Gradient Change of Mechanical Behavior of Dosidicus Gigas Beak and Preparation of Biomimetic Materials
-
摘要: 水合的茎柔鱼角质颚喙具有很大的硬度梯度,从喙部到翼部硬度相差两个数量级。这种力学性能的梯度变化与角质颚的几丁质、水和蛋白质混合物等化学成分有关,蛋白质通过多巴进行交联耦合,交联后含有组氨酸的蛋白质决定了角质颚的硬度大小。基于茎柔鱼角质颚力学性能具有梯度变化这一特性,利用壳聚糖等有机物制作了具有类似硬度梯度变化的材料,实现了仿生材料在不存在界面的情况下其力学性能呈现空间梯度变化的特点。Abstract: The beak of Dosidicus gigas is a feeding organ, which is completely composed of organic matter. The rostrum of the beak has a strong hardness and mechanical strength. The mechanical strength shows a significant gradient change, gradually decreasing from the rostrum to the wing. And the degree of pigmentation is gradually becoming shallower. Inspired by the gradient of the mechanical properties of stalk squid, we used chitosan, dopa, sodium periodate and other organic materials to construct materials that showed similar mechanical properties to the keratin. The materials can eliminate the interface, and their mechanical properties are spatially variable.
-
Key words:
- beak /
- mechanical behavior /
- gradient change /
- bionic material production
-
表 1 茎柔鱼角质颚塑料-薄膜的拉伸性能
Table 1. Plastic-film tensile properties of Dosidicus gigas’s beak
Different parts
of beakElasticity modulus/MPa Tensile strength/MPa Elongation at break/% Rostrum 3448.02 64.38 7.27 Lateral wall 1950.34 49.60 9.98 Wing 790.74 38.05 10.84 表 2 塑料-薄膜拉伸性能实验
Table 2. Plastic-film tensile properties test
w(NaIO4)/% m(NaIO4)/mg Elasticity modulus/MPa Tensile strength/MPa Elongation
at break/%1 1.25 508.85 29.59 16.41 3 3.75 838.06 35.12 10.25 5 6.25 1895.95 42.96 8.64 9 11.25 2447.34 51.38 6.88 15 18.75 1625.48 37.86 4.55 25 31.25 1152.99 26.14 1.90 -
[1] SUN J Y, BHUSHAN B. Hierarchical structure and mechanical properties of nacre: A review[J]. RSC Advances, 2012, 2: 7617-7632. doi: 10.1039/c2ra20218b [2] BURROWS M, SUTTON G P. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking[J]. Journal of Experimental Biology, 2012, 215(19): 3501-3512. [3] AMINI S, TADAYON M, IDAPALAPATI S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club[J]. Nature Materials, 2015, 14(9): 943-950. doi: 10.1038/nmat4309 [4] 刘必林, 陈新军. 头足类角质颚的研究进展[J]. 水产学报, 2009, 33(1): 157-164. [5] LIU B L, FANG Z, CHEN X J, et al. Spatial variations in beak structure to identify potentially geographic populations of Dosidicusgigas in the Eastern Pacific Ocean[J]. Fisheries Research, 2015, 164: 185-192. doi: 10.1016/j.fishres.2014.12.001 [6] HERANDEZ-LOPEZ J L, CASTRO-HERNANDEZ J L. Age determined from the daily deposition of concentric rings on common octopus(Octopus vulgaris) beaks[J]. Fishery Bulletin, 2001, 99(4): 679-684. [7] JACKSON G D. The use of beaks as tools for biomass estimation in the deep water squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in New Zealand waters[J]. Polar Biology, 1995, 15: 9-14. [8] MISEREZ A, LI Y L, WAITE J H, et al. Jumbo squid beaks: Inspiration for design of robust organic composites[J]. Acta Biomaterialia, 2007, 3: 139-149. doi: 10.1016/j.actbio.2006.09.004 [9] 赵建民, 麦康森, 张文兵, 等. 贝壳珍珠层及其仿生应用[J]. 高技术通讯, 2003, 13(11): 94-98. doi: 10.3321/j.issn:1002-0470.2003.11.022 [10] 李恒德, 冯庆玲, 崔福斋. 贝壳珍珠层及仿生制备研究[J]. 清华大学学报(自然科学版), 2001, 41(4/5): 41-47, 62. [11] 张永俐. SiC/Al合金层状复合材料的机械性能及损伤行为[J]. 材料科学与工程, 1994, 12(4): 22-26. [12] NILS A, NEIL H T, BETTYE L S. Methods for fabricating and characterizing a new generation of biomimetic materials[J]. Materials Science and Engineering: C, 1999, 7(1): 37-43. doi: 10.1016/S0928-4931(98)00072-1 [13] ZHOU B L. Some progress in the biomimetic study of composite materials[J]. Materials Chemistry and Physics, 1996, 45(2): 114-119. doi: 10.1016/0254-0584(96)80087-3 [14] 崔大祥, 高华建. 生物纳米材料的进展与前景[J]. 中国科学院院刊, 2003, 18(1): 20-24. doi: 10.3969/j.issn.1000-3045.2003.01.008 [15] ANG T H, SULTANA F S A, HUTMACHER D W. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system[J]. Materials Science & Engineering: C, 2002, 20(1/2): 35-42. [16] DESAIT T A, HANSFORD D, FERRAR M. Characterization of micromachined silicon membranes for immunoisolalion and bioseparation applications[J]. Journal of Membrane Science, 1999, 159(1/2): 221-231. doi: 10.1016/S0376-7388(99)00062-9 [17] ZHANG X, HASSANZADEH P, MIYAKE T, et al. Squid beak inspired water processable chitosan composites with tunable mechanical properties[J]. Journal of Materials Chemistry B, 2016, 4(13): 2273-2279. doi: 10.1039/C6TB00106H [18] MISEREZ A, SCHNEBERK T, SUN C, et al. The transition from stiff to compliant materials in squid beaks[J]. Science, 2008, 319: 1816-1819. doi: 10.1126/science.1154117 [19] MISEREZ A, RUBIN D, WAITE J H. Cross-linking chemistry of squid beak[J]. Journal of Biological Chemistry, 2010, 285(49): 38115-38124. doi: 10.1074/jbc.M110.161174 -