高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

茎柔鱼角质颚机械性能梯度变化及其材料仿制

林静远 刘必林 金宵

林静远, 刘必林, 金宵. 茎柔鱼角质颚机械性能梯度变化及其材料仿制[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201228002
引用本文: 林静远, 刘必林, 金宵. 茎柔鱼角质颚机械性能梯度变化及其材料仿制[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201228002
LIN Jingyuan, LIU Bilin, JIN Xiao. Studying on gradient change of mechanical behavior of Dosidicus gigas beak and Preparation the biomimetic materials[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201228002
Citation: LIN Jingyuan, LIU Bilin, JIN Xiao. Studying on gradient change of mechanical behavior of Dosidicus gigas beak and Preparation the biomimetic materials[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201228002

茎柔鱼角质颚机械性能梯度变化及其材料仿制

doi: 10.14135/j.cnki.1006-3080.20201228002
基金项目: 国家重点研发计划(2019YFD0901404);上海市高校特聘教授“东方学者”岗位计划项目(0810000243);上海市“浦江人才”计划项目(18PJ1404100);上海市科技创新行动计划(19DZ1207502)
详细信息
    作者简介:

    林静远(1994-),女,上海人,硕士,研究方向为渔业资源生物学

    通讯作者:

    刘必林,E−mail:bl-liu@shou.edu.cn

Studying on gradient change of mechanical behavior of Dosidicus gigas beak and Preparation the biomimetic materials

  • 摘要: 水化的茎柔鱼角质颚喙具有很大的硬度梯度,从喙部到翼部相差两个数量级。这种机械性能的梯度变化与角质颚的几丁质、水和蛋白质混合物等这些化学成分有关,蛋白质通过多巴进行交联耦合,交联后含有组氨酸的蛋白质决定了角质颚的硬度大小。基于茎柔鱼角质颚机械性能具有梯度变化这一特性,利用壳聚糖等有机物制作了具有类似硬度梯度变化的材料,实现了仿生材料在不存在界面的情况下其力学性能呈现空间梯度变化的特点。

     

  • 图  1  角质颚的结构

    Figure  1.  Beak strwctres

    图  2  制备得到的角质颚梯度材料样条

    Figure  2.  Prepared beak gradient material sample

    图  3  茎柔鱼角质颚不同部位应力与应变大小

    Figure  3.  Stress and strain of different parts of Dosidicus gigas’s beaks

    图  4  水合的角质颚不同部位硬度

    Figure  4.  The hardness of different parts of the hydrated Dosidicus gigas’s beak

    图  5  不同质量分数NaIO4比下的交联密度

    Figure  5.  Crosslink density at different mass fraction of NaIO4 and chitosan

    图  6  偏高碘酸钠与壳聚糖不同质量比时材料拉伸强度与韧性的变化曲线

    Figure  6.  Variation curves of tensile strength and toughness of NaIO4 and chitosan at different mass ratios

    图  7  不同偏高碘酸钠与壳聚糖质量比时样条的杨氏模量(a)、拉伸强度(b)与断裂伸长率(c)变化趋势

    Figure  7.  Young's modulus (a), tensile strength (b) and elongation at break (c) of different ratio of NaIO4 and chitosan

    图  8  NaIO4与壳聚糖的质量在不同质量比下的硬度

    Figure  8.  The hardness of chitosan and NaIO4 at different mass ratios

    图  9  茎柔鱼角质颚各部机械性能与仿生材料机械性能对比

    Figure  9.  Comparison of mechanical properties of various parts of Dosidicus gigas’s beak with biomimetic materials

    表  1  茎柔鱼角质颚塑料-薄膜拉伸性能试验

    Table  1.   Plastic-film tensile properties test of Dosidicus gigas’s beak

    Different parts
    of beak
    Young's modulus E/MpaTensile strength/MpaElongation at break/%
    Rostrum3448.0264.387.27
    Lateral wall1950.3449.609.98
    Wing790.7438.0510.84
    下载: 导出CSV

    表  2  塑料-薄膜拉伸性能实验

    Table  2.   Plastic-film tensile properties test

    The mass ratio of
    NaIO4 to chitosan
    NaIO4/mgYoung's modulus/MPaTensile strength/MPaelongation at break/%
    1%1.25508.8529.5916.41
    3%3.75838.0635.1210.25
    5%6.251895.9542.968.64
    9%11.252447.3451.386.88
    15%18.751625.4837.864.55
    25%31.251152.9926.141.9
    下载: 导出CSV
  • [1] SUN J Y, BHUSHAN B. Hierarchical structure and mechanical properties of nacre: A review[J]. RSC Advances, 2012, 2: 7617-7632. doi: 10.1039/c2ra20218b
    [2] BURROWS M, SUTTON G P. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking[J]. Journal of Experimental Biology, 2012, 215(19): 3501-3512.
    [3] AMINI S, TADAYON M, IDAPALAPATI S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club[J]. Nature materials, 2015, 14(9): 943-950. doi: 10.1038/nmat4309
    [4] 刘必林, 陈新军. 头足类角质颚的研究进展[J]. 水产学报, 2009, 33(1): 157-164.
    [5] LIU B L, FANG Z, CHEN X J, et al. Spatial variations in beak structure to identify potentially geographic populations of Dosidicusgigasin the Eastern Pacific Ocean[J]. Fisheries Research, 2015, 164: 185-192. doi: 10.1016/j.fishres.2014.12.001
    [6] HERANDEZ-LOPEZ J L, CASTRO-HERNANDEZ J L. Age determined from the daily deposition of concentric rings on common octopus(Octopus vulgaris) beaks[J]. Fishery Bulletin, 2001, 99(4): 679-684.
    [7] JACKSON G D. The use of beaks as tools for biomass estimation in the deep water squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in New Zealand waters[J]. Polar Biology, 1995, 15: 9-14.
    [8] MISEREZ A, LI Y L, WAITE J H, et al. Jumbo squid beaks: Inspiration for design of robust organic composites[J]. Acta Biomaterialia, 2007, 3: 139-149. doi: 10.1016/j.actbio.2006.09.004
    [9] 赵建民, 麦康森, 张文兵, 等. 贝壳珍珠层及其仿生应用[J]. 高技术通讯, 2003, 13(11): 94-98. doi: 10.3321/j.issn:1002-0470.2003.11.022
    [10] 李恒德, 冯庆玲, 崔福斋. 贝壳珍珠层及仿生制备研究[J]. 清华大学学报(自然科学版), 2001, 41(4-5): 41-47, 62.
    [11] 张永俐. SiC/Al合金层状复合材料的机械性能及损伤行为[J]. 材料科学与工程, 1994, 12(4): 22-26.
    [12] NILS A, NEIL H T, BETTYE L S. Methods for fabricating and characterizing a new generation of biomimetic materials[J]. Materials Science and Engineering: C, 1999, 7(1): 37-43. doi: 10.1016/S0928-4931(98)00072-1
    [13] ZHOU B L. Some progress in the biomimetic study of composite materials[J]. Materials Chemistry and Physics, 1996, 45(2): 114-119. doi: 10.1016/0254-0584(96)80087-3
    [14] 崔大祥, 高华建. 生物纳米材料的进展与前景[J]. 中国科学院院刊, 2003, 18(1): 20-24. doi: 10.3969/j.issn.1000-3045.2003.01.008
    [15] ANG T H, SULTANA F S A, HUTMACHER D W. Fabrication of 3D chitosan- hydroxyapatite scaffolds using a robotic dispensing system[J]. Materials Science& Engineering: C, 2002, 20(1-2): 35-42.
    [16] DESAIT T A, HANSFORD D, FERRAR M. Characterization of micromachined silicon membranes for immunoisolalion and bioseparation applications[J]. Journal of Membrane Science, 1999, 159(1-2): 221-231. doi: 10.1016/S0376-7388(99)00062-9
    [17] ZHANG X, HASSANZADEH P, MIYAKE T, et al. Squid beak inspired water processable chitosan composites with tunable mechanical properties[J]. Journal of Materials Chemistry B, 2016, 4(13): 2273-2279. doi: 10.1039/C6TB00106H
    [18] MISEREZ A, SCHNEBERK T, SUN C, et al. The transition from stiff to compliant materials in squid beaks[J]. Science, 2008, 319: 1816-1819. doi: 10.1126/science.1154117
    [19] MISEREZ A, RUBIN D, WAITE J H. Cross-linking chemistry of squid beak[J]. Journal of Biological Chemistry, 2010, 285(49): 38115-38124. doi: 10.1074/jbc.M110.161174
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  41
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回